Can MiRBase Provide Positive Data for Machine Learning for the Detection of MiRNA Hairpins?
نویسندگان
چکیده
Experimental detection and validation of miRNAs is a tedious, time-consuming, and expensive process. Computational methods for miRNA gene detection are being developed so that the number of candidates that need experimental validation can be reduced to a manageable amount. Computational methods involve homology-based and ab inito algorithms. Both approaches are dependent on positive and negative training examples. Positive examples are usually derived from miRBase, the main resource for experimentally validated miRNAs. We encountered some problems with miRBase which we would like to report here. Some problems, among others, we encountered are that folds presented in miRBase are not always the fold with the minimum free energy; some entries do not seem to conform to expectations of miRNAs, and some external accession numbers are not valid. In addition, we compared the prediction accuracy for the same negative dataset when the positive data came from miRBase or miRTarBase and found that the latter led to more precise prediction models. We suggest that miRBase should introduce some automated facilities for ensuring data quality to overcome these problems.
منابع مشابه
Prediction of human microRNA hairpins using only positive sample learning
MicroRNAs (miRNAs) are small molecular non-coding RNAs that have important roles in the post-transcriptional mechanism of animals and plants. They are commonly 21-25 nucleotides (nt) long and derived from 60-90 nt RNA hairpin structures, called miRNA hairpins. A larger number of sequence segments in the human genome have been computationally identified with such 60-90 nt hairpins, however the m...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملEmotion Detection in Persian Text; A Machine Learning Model
This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...
متن کاملSystematic Curation of miRBase Annotation Using Integrated Small RNA High-Throughput Sequencing Data for C. elegans and Drosophila
MicroRNAs (miRNAs) are a class of 20-23 nucleotide small RNAs that regulate gene expression post-transcriptionally in animals and plants. Annotation of miRNAs by the miRNA database (miRBase) has largely relied on computational approaches. As a result, many miRBase entries lack experimental validation, and discrepancies between miRBase annotation and actual miRNA sequences are often observed. In...
متن کاملشناسایی RNA های غیرکدکننده کوتاه عملکردی با استفاده از روش های بیوانفورماتیکی در گوسفند و بز
MicroRNAs (miRNAs) are small non-coding RNAs that have functional roles in post-transcriptional modification. They regulate gene expression by an RNA interfering pathway through cleavage or inhibition of the translation of target mRNA. Numerous miRNAs have been described for their important functions in developmental processes in numerous animals, but there is limited information about sheep an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of integrative bioinformatics
دوره 10 2 شماره
صفحات -
تاریخ انتشار 2013