Orientation tuning, but not direction selectivity, is invariant to temporal frequency in primary visual cortex.
نویسندگان
چکیده
The activity of neurons in primary visual cortex is influenced by the orientation, contrast, and temporal frequency of a visual stimulus. This raises the question of how these stimulus properties interact to shape neuronal responses. While past studies have shown that the bandwidth of orientation tuning is invariant to stimulus contrast, the influence of temporal frequency on orientation-tuning bandwidth is unknown. Here, we investigate the influence of temporal frequency on orientation tuning and direction selectivity in area 17 of ferret visual cortex. For both simple cells and complex cells, measures of orientation-tuning bandwidth (half-width at half-maximum response) are approximately 20-25 degrees across a wide range of temporal frequencies. Thus cortical neurons display temporal-frequency invariant orientation tuning. In contrast, direction selectivity is typically reduced, and occasionally reverses, at nonpreferred temporal frequencies. These results show that the mechanisms contributing to the generation of orientation tuning and direction selectivity are differentially affected by the temporal frequency of a visual stimulus and support the notion that stability of orientation tuning is an important aspect of visual processing.
منابع مشابه
Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex.
Neurons in primary visual cortex are highly sensitive to the contrast, orientation, and temporal frequency of a visual stimulus. These three stimulus properties can be varied independently of one another, raising the question of how they interact to influence neuronal responses. We recorded from individual neurons in ferret primary visual cortex to determine the influence of stimulus contrast o...
متن کاملA neural network for detection of orientation, velocity and direction of movement, based on physiological rules
Aim of this work is to present two neural network models for detection of velocity, orientation and direction of movement in visual images. Both models mimic a single hypercolumn in the primary visual cortex. They differ as to the arrangement of inhibitory circuitry: in the first (“anti-phase inhibition model”) inhibition is in phase opposition with excitation, but with a similar orientation tu...
متن کاملLaminar organization of response properties in primary visual cortex of the gray squirrel (Sciurus carolinensis).
The gray squirrel (Sciurus carolinensis) is a diurnal highly visual rodent with a cone-rich retina. To determine which features of visual cortex are common to highly visual mammals and which are restricted to non-rodent species, we studied the laminar organization of response properties in primary visual area V1 of isoflurane-anesthetized squirrels using extra-cellular single-unit recording and...
متن کاملEffects of stimulus spatial frequency, size, and luminance contrast on orientation tuning of neurons in the dorsal lateral geniculate nucleus of cat
It is generally thought that orientation selectivity first appears in the primary visual cortex (V1), whereas neurons in the lateral geniculate nucleus (LGN), an input source for V1, are thought to be insensitive to stimulus orientation. Here we show that increasing both the spatial frequency and size of the grating stimuli beyond their respective optimal values strongly enhance the orientation...
متن کاملA Multi-Stage Model for Fundamental Functional Properties in Primary Visual Cortex
Many neurons in mammalian primary visual cortex have properties such as sharp tuning for contour orientation, strong selectivity for motion direction, and insensitivity to stimulus polarity, that are not shared with their sub-cortical counterparts. Successful models have been developed for a number of these properties but in one case, direction selectivity, there is no consensus about underlyin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 94 2 شماره
صفحات -
تاریخ انتشار 2005