Existence of symmetric positive solutions for a semipositone problem on time scales

نویسندگان

  • S. Gulsan Topal
  • Arzu Denk
چکیده

This paper studies the existence of symmetric positive solutions for a second order nonlinear semipositone boundary value problem with integral boundary conditions by applying the Krasnoselskii fixed point theorem. Emphasis is put on the fact that the nonlinear term f may take negative value. An example is presented to demonstrate the application of our main result.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of positive solutions for a second-order p-Laplacian impulsive boundary value problem on time scales

In this paper, we investigate the existence of positive solutions for a second-order multipoint p-Laplacian impulsive boundary value problem on time scales. Using a new fixed point theorem in a cone, sufficient conditions for the existence of at least three positive solutions are established. An illustrative example is also presented.

متن کامل

Existence of Three Positive Solutions of Semipositone Boundary Value Problems on Time Scales

In this paper, we consider the existence of triple positive solutions for the second order semipositone m-point boundary value problem on time scales. We emphasize that the nonlinear term f may take a negative value.

متن کامل

Triple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian

‎In this paper‎, ‎we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian‎ ‎dynamic equation on time scales‎. ‎We prove the existence at least three positive solutions of the boundary‎ ‎value problem by using the Avery and Peterson fixed point theorem‎. ‎The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly‎. ‎Our results ...

متن کامل

Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales

‎In this paper‎, ‎we study the boundary-value problem of fractional‎ ‎order dynamic equations on time scales‎, ‎$$‎ ‎^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin‎ ‎[0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1

متن کامل

Existence of Positive Solutions for Semipositone Higher-Order BVPS on Time Scales

We offer conditions on semipositone function f t, u0, u1, . . . , un−2 such that the boundary value problem, uΔ n t f t, u σn−1 t , uΔ σn−2 t , . . . , uΔ n−2 σ t 0, t ∈ 0, 1 ∩ T, n ≥ 2, uΔi 0 0, i 0, 1, . . . , n − 3, αuΔ 0 − βuΔ 0 0, γuΔ σ 1 δuΔ σ 1 0, has at least one positive solution, where T is a time scale and f t, u0, u1, . . . , un−2 ∈ C 0, 1 × R 0,∞ n−1,R −∞,∞ is continuous with f t, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016