A super-resolution mapping method using local indicator variograms

نویسندگان

  • Huiran Jin
  • Giorgos Mountrakis
  • Peijun Li
  • HUIRAN JIN
  • GIORGOS MOUNTRAKIS
  • PEIJUN LI
چکیده

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Super-resolution mapping (SRM) is a recently developed research task in the field of remotely sensed information processing. It provides the ability to obtain land-cover maps at a finer scale using relatively low-resolution images. Existing algorithms based on indicator geostatistics and downscaling cokriging offer an SRM approach using spatial structure models derived from real data. In this article, a novel SRM method is developed based on a sequentially produced with local indicator variogram (SLIV) SRM model. In the SLIV method, indicator variograms extracted from target-resolution classification are produced from a representative local area as opposed to using the entire image. This simplifies the application of the method since limited target-resolution reference data are required. Our investigation on three diverse case studies shows that the local window (approximately 2% of the entire study area) selection process offers comparable accuracy results to those using globally derived spatial structures, indicating our methodology to be a promising practice. Furthermore, comparison of the proposed method with random realizations indicates an improvement of 7–12% in terms of overall accuracy and 15–18% in terms of the kappa coefficient. The evaluation focused on a 270–30 m pixel size reconstruction as a potential popular application, for example moving from Moderate Resolution Imaging Spectroradiometer (MODIS) to Landsat-type resolutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Super-Resolution Mapping by Combining Multiple Realizations Obtained Using the Indicator-Geostatistics Based Method

Indicator-geostatistics based super-resolution mapping (IGSRM) is a popular super-resolution mapping (SRM) method. Unlike most existing SRM methods that produce only one SRM result each, IGSRM generates multiple equally plausible super-resolution realizations (i.e., SRM results). However, multiple super-resolution realizations are not desirable in many applications, where only one SRM result is...

متن کامل

Super-Resolution Land Cover Mapping with Indicator Geostatistics

Many satellite images have a spatial resolution coarser than the extent of land cover patterns on the ground, leading to mixed pixels whose composite spectral response consists of responses from multiple land cover classes. Spectral unmixing procedures only determine the fractions of such classes within a coarse pixel without locating them in space. Super-resolution or sub-pixel mapping aims at...

متن کامل

Robust Fuzzy Content Based Regularization Technique in Super Resolution Imaging

Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Deep Depth Super-Resolution: Learning Depth Super-Resolution Using Deep Convolutional Neural Network

Depth image super-resolution is an extremely challenging task due to the information loss in sub-sampling. Deep convolutional neural network have been widely applied to color image super-resolution. Quite surprisingly, this success has not been matched to depth super-resolution. This is mainly due to the inherent difference between color and depth images. In this paper, we bridge up the gap and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012