Electrochemical detection of protein by using magnetic graphene-based target enrichment and copper nanoparticles-assisted signal amplification.
نویسندگان
چکیده
In this paper, we propose a new method for protein detection by making use of magnetic graphene for enrichment and separation of the targets and duplex DNA-templated copper nanoparticles for amplification of electrochemical signals. Because the binding of the target protein (e.g. folate receptor) and small molecule (e.g. folate) can protect complementary DNA (cDNA) from exonuclease III-catalyzed degradation, duplex DNA from the hybridization of probe DNA and cDNA can act as the template for the formation of copper nanoparticles (CuNPs). Afterward, CuNPs-coated DNA can be enriched on the surface of magnetic graphene through the 3'-overhanging end of probe DNA, and then separated from the reaction mixture with the aid of magnet. As a result, copper ions released from acid-dissolution of CuNPs can catalyze the oxidation of o-phenylenediamine (OPD) by dissolved oxygen, resulting in an amplified electrochemical response. Our method can sensitively detect target protein over a wide linear range and with a low detection limit of 7.8 pg mL(-1), which can easily distinguish the targets even in complex serum samples. Therefore, this method may be promising for the clinical diagnosis of protein biomarkers by changing the recognition elements in the future.
منابع مشابه
Gold nano-particles as electrochemical signal amplifier for immune-reaction monitoring
A new signal amplification strategy based on simultaneous application of gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) was employed to improve the sensitivity of an electrochemical immunoassay for detection of human IgG (hIgG), as a model antigenic protein. This immunoassay system was fabricated on magnetic carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNT/Fe3...
متن کاملGold nano-particles as electrochemical signal amplifier for immune-reaction monitoring
A new signal amplification strategy based on simultaneous application of gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) was employed to improve the sensitivity of an electrochemical immunoassay for detection of human IgG (hIgG), as a model antigenic protein. This immunoassay system was fabricated on magnetic carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNT/Fe3...
متن کاملEnhancing electrochemical detection on graphene oxide-CNT nanostructured electrodes using magneto-nanobioprobes
Graphene and related materials have come to the forefront of research in electrochemical sensors during recent years due to the promising properties of these nanomaterials. Further applications of these nanomaterials have been hampered by insufficient sensitivity offered by these nanohybrids for the type of molecules requiring lower detection ranges. Here, we report a signal amplification strat...
متن کاملAn ultrasensitive label-free electrochemical immunosensor based on signal amplification strategy of multifunctional magnetic graphene loaded with cadmium ions
Herein, a novel and ultrasensitive label-free electrochemical immunosensor was proposed for quantitative detection of human Immunoglobulin G (IgG). The amino functionalized magnetic graphenes nanocomposites (NH2-GS-Fe3O4) were prepared to bond gold and silver core-shell nanoparticles (Au@Ag NPs) by constructing stable Au-N and Ag-N bond between Au@Ag NPs and -NH2. Subsequently, the Au@Ag/GS-Fe3...
متن کاملDouble Biocatalysis Signal Amplification Glucose Biosensor Based on Porous Graphene
Controllable preparation of nanopores to promote the performance of electrochemical biosensing interfaces has become one of the researching frontiers in biosensing. A double biocatalysis signal amplification of glucose biosensor for the study of electrochemical behaviors of glucose oxidase (GOx) was proposed by using horseradish peroxidase biosynthesized porous graphene (PGR) as the platform fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Analyst
دوره 140 22 شماره
صفحات -
تاریخ انتشار 2015