Generating all nite modular lattices of a given size

نویسندگان

  • Peter Jipsen
  • Nathan Lawless
  • Brian Davey
چکیده

Modular lattices, introduced by R. Dedekind, are an important subvariety of lattices that includes all distributive lattices. Heitzig and Reinhold [6] developed an algorithm to enumerate, up to isomorphism, all nite lattices up to size 18. Here we adapt and improve this algorithm to construct and count modular lattices up to size 23, semimodular lattices up to size 22, and lattices of size 19. We also show that 2n−3 is a lower bound for the number of nonisomorphic modular lattices of size n.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating All Finite Modular Lattices of a Given Size

Modular lattices, introduced by R. Dedekind, are an important subvariety of lattices that includes all distributive lattices. Heitzig and Reinhold [6] developed an algorithm to enumerate, up to isomorphism, all nite lattices up to size 18. Here we adapt and improve this algorithm to construct and count modular lattices up to size 23, semimodular lattices up to size 22, and lattices of size 19. ...

متن کامل

MODULARITY OF AJMAL FOR THE LATTICES OF FUZZY IDEALS OF A RING

In this paper, we construct two fuzzy sets using the notions of level subsets and strong level subsets of a given fuzzy set in a ring R. These fuzzy sets turn out to be identical and provide a universal construction of a fuzzy ideal generated by a given fuzzy set in a ring. Using this construction and employing the technique of strong level subsets, we provide the shortest and direct fuzzy set ...

متن کامل

Cover-preserving Embedding of Modular Lattices

In this note we prove: If a subdirect product of ̄nitely many ̄nite projective geometries has the cover-preserving embedding property, then so does each factor. In what follows all the lattices will be ̄nite modular ones. A ̄nite lattice K has the cover-preseving embedding property, abbreviated as CPEP with respect a variety V of lattices if whenever K can be embedded into a ̄nite lattice L in ...

متن کامل

On the Loewy Rank of Infinite Algebras

The Loewy rank of a complete lattice L is deened as follows. Take the meet a 1 of all coatoms of L. Then let a 2 be the meet of all lower covers of a 1. Iterate this process to deene a for every ordinal by letting a +1 be the meet of all lower covers of a , and a the meet of all a (for <) if is a limit ordinal. The Loewy rank of L is the smallest ordinal for which a is the zero of L, and the sy...

متن کامل

Type II Codes, Even Unimodular Lattices, and Invariant Rings

In this paper, we study self-dual codes over the ring Z 2k of the integers modulo 2k with relationships to even unimodular lattices, modular forms, and invariant rings of 1 nite groups. We introduce Type II codes over Z 2k which are closely related to even unimodular lattices, as a remarkable class of self-dual codes and a generalization of binary Type II codes. A construction of even unimodula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013