Characterisation of the Porphyromonas gingivalis Manganese Transport Regulator Orthologue

نویسندگان

  • Lianyi Zhang
  • Catherine A. Butler
  • Hasnah S. G. Khan
  • Stuart G. Dashper
  • Christine A. Seers
  • Paul D. Veith
  • Jian-Guo Zhang
  • Eric C. Reynolds
چکیده

PgMntR is a predicted member of the DtxR family of transcriptional repressors responsive to manganese in the anaerobic periodontal pathogen Porphyromonas gingivalis. Our bioinformatic analyses predicted that PgMntR had divalent metal binding site(s) with elements of both manganous and ferrous ion specificity and that PgMntR has unusual twin C-terminal FeoA domains. We produced recombinant PgMntR and four variants to probe the specificity of metal binding and its impact on protein structure and DNA binding. PgMntR dimerised in the absence of a divalent transition metal cation. PgMntR bound three Mn(II) per monomer with an overall dissociation constant Kd 2.0 x 10(-11) M at pH 7.5. PgMntR also bound two Fe(II) with distinct binding affinities, Kd1 2.5 x 10(-10) M and Kd2 ≤ 6.0 x 10(-8) M at pH 6.8. Two of the metal binding sites may form a binuclear centre with two bound Mn2+ being bridged by Cys108 but this centre provided only one site for Fe2+. Binding of Fe2+ or Mn2+ did not have a marked effect on the PgMntR secondary structure. Apo-PgMntR had a distinct affinity for the promoter region of the gene encoding the only known P. gingivalis manganese transporter, FB2. Mn2+ increased the DNA binding affinity of PgMntR whilst Fe2+ destabilised the protein-DNA complex in vitro. PgMntR did not bind the promoter DNA of the gene encoding the characterised iron transporter FB1. The C-terminal FeoA domain was shown to be essential for PgMntR structure/function, as its removal caused the introduction of an intramolecular disulfide bond and abolished the binding of Mn2+ and DNA. These data indicate that PgMntR is a novel member of the DtxR family that may function as a transcriptional repressor switch to specifically regulate manganese transport and homeostasis in an iron-dependent manner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Porphyromonas gingivalis ferric uptake regulator orthologue does not regulate iron homeostasis

Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that has an absolute requirement for iron which it transports from the host as heme and/or Fe(2 +). Iron transport must be regulated to prevent toxic effects from excess metal in the cell. P. gingivalis has one ferric uptake regulator (Fur) orthologue encoded in its genome called Har, which would be expected to regulate the transpo...

متن کامل

The Porphyromonas gingivalis Ferric Uptake Regulator Orthologue Binds Hemin and Regulates Hemin-Responsive Biofilm Development

Porphyromonas gingivalis is a Gram-negative pathogen associated with the biofilm-mediated disease chronic periodontitis. P. gingivalis biofilm formation is dependent on environmental heme for which P. gingivalis has an obligate requirement as it is unable to synthesize protoporphyrin IX de novo, hence P. gingivalis transports iron and heme liberated from the human host. Homeostasis of a variety...

متن کامل

A Two-Component System Regulates Hemin Acquisition in Porphyromonas gingivalis

Porphyromonas gingivalis is a Gram-negative oral anaerobe associated with infection of the periodontia. The organism has a small number of two-component signal transduction systems, and after comparing genome sequences of strains W83 and ATCC 33277 we discovered that the latter was mutant in histidine kinase (PGN_0752), while the cognate response regulator (PGN_0753) remained intact. Microarray...

متن کامل

A change of the metal-specific activity of a cambialistic superoxide dismutase from Porphyromonas gingivalis by a double mutation of Gln-70 to Gly and Ala-142 to Gln.

Gln-70, which is located near the active-site metal, is conserved in aligned amino acid sequences of iron-containing superoxide dimutases (Fe-SODs) and cambialistic SOD from Porphyromonas gingivalis, but is complementarily substituted with Gln-142 in manganese-containing SODs (Mn-SODs). In order to clarify the contribution of this exchange of Gln to the metal-specific activity of P. gingivalis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016