Defect-tolerant n2-transistor structure for reliable nanoelectronic designs
نویسندگان
چکیده
Nanodevices based circuit design will be based on the acceptance that a high percentage of devices in the design will be defective. In this work, we investigate a defect tolerant technique that adds redundancy at the transistor level and provides built-in immunity to permanent defects (stuck-open, stuck-short and bridges). The proposed technique is based on replacing each transistor by N-transistor structure (N≥2) that guarantees defect tolerance of all N-1 defects as validated by theoretical analysis and simulation. As demonstrated by extensive simulation results using ISCAS 85 and 89 benchmark circuits, the investigated technique achieves significantly higher defect tolerance than recently reported nanoelectronics defect-tolerant techniques (even with up to 4 to 5 times more transistor defect probability) and at reduced area overhead.
منابع مشابه
-Transistor Structure for Reliable Nanoelectronic Designs
Nanodevices based circuit design will be based on the acceptance that a high percentage of devices in the design will be defective. In this work, we investigate a defect tolerant technique that adds redundancy at the transistor level and provides built-in immunity to permanent defects (stuck-open, stuck-short and bridges). The proposed technique is based on replacing each transistor by N 2 -tra...
متن کاملFault-tolerant adder design in quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...
متن کاملFault-tolerant adder design in quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...
متن کاملNovel efficient fault-tolerant full-adder for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...
متن کاملNovel efficient fault-tolerant full-adder for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IET Computers & Digital Techniques
دوره 3 شماره
صفحات -
تاریخ انتشار 2009