Test Case Priortization Using Genetic Algorithm
نویسندگان
چکیده
Software is built by human so it cannot be perfect. So in order to make sure that developed software does not do any unintended thing we have to test every software before launching it in the operational world. Software testing is the major part of software development lifecycle. Testing involves identifying the test cases which can find the errors in the program. Exhaustive testing is not a good idea to follow. It is very difficult and time consuming to perform. In this paper a technique has been proposed to do prioritize test cases according to their capability of finding errors. One which is more likely to find the errors has been assigned a higher priority and the one which is less likely to find the errors in the program has been assigned low priority. It is recommended to execute the test cases according their priority to find the errors.
منابع مشابه
A Novel Approach for Priortization of Optimized Test Cases
Generation and prioritization of test cases is one of the major issue in software testing.Maximum number of faults are identified through test cases only. Clients confidence can be gained through software testing. This paper firstly generates test cases using decision coverage metrics which gave redundant set of set cases. So, in in order to generate optimized set of test cases, genetic algorit...
متن کاملProduction Planning Optimization Using Genetic Algorithm and Particle Swarm Optimization (Case Study: Soofi Tea Factory)
Production planning includes complex topics of production and operation management that according to expansion of decision-making methods, have been considerably developed. Nowadays, Managers use innovative approaches to solving problems of production planning. Given that the production plan is a type of prediction, models should be such that the slightest deviation from their reality. In this ...
متن کاملA New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm
This paper presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...
متن کاملRESOLUTION OF NONLINEAR OPTIMIZATION PROBLEMS SUBJECT TO BIPOLAR MAX-MIN FUZZY RELATION EQUATION CONSTRAINTS USING GENETIC ALGORITHM
This paper studies the nonlinear optimization problems subject to bipolar max-min fuzzy relation equation constraints. The feasible solution set of the problems is non-convex, in a general case. Therefore, conventional nonlinear optimization methods cannot be ideal for resolution of such problems. Hence, a Genetic Algorithm (GA) is proposed to find their optimal solution. This algorithm uses th...
متن کاملROBUST FUZZY CONTROL DESIGN USING GENETIC ALGORITHM OPTIMIZATION APPROACH: CASE STUDY OF SPARK IGNITION ENGINE TORQUE CONTROL
In the case of widely-uncertain non-linear system control design, it was very difficult to design a single controller to overcome control design specifications in all of its dynamical characteristics uncertainties. To resolve these problems, a new design method of robust fuzzy control proposed. The solution offered was by creating multiple soft-switching with Takagi-Sugeno fuzzy model for optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007