Classification and Control of Cognitive Radios Using Hierarchical Neural Network

نویسندگان

  • Sheng Chen
  • Xiaochen Li
  • Qiao Cai
  • Nansai Hu
  • Haibo He
  • Yu-Dong Yao
  • Joseph Mitola
چکیده

This paper proposes a method to protect the communication band through machine learning in cognitive networks. A machine learning cognitive radio (MLCR) extracts features from the signal waveforms received from various radios. A machine learning radio user (MLRU) assigns the states, i.e., unauthorized/authorized, and the associated actions, i.e., interfering/no interfering, to each waveform. The MLCR learns through a proposed hierarchical neural network to classify the signal states based on their features. The {signal, action} pairs are stored in the knowledge base and can be retrieved by MLCR automatically based on its prediction of the signal state related to the presented signal waveform. A case study of protecting the band of a legacy radio using our proposed method is provided to validate the effectiveness of this work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Iranian traditional musical modes (DASTGÄH) with artificial neural network

The concept of Iranian traditional musical modes, namely DASTGÄH, is the basis for the traditional music system. The concept introduces seven DASTGÄHs. It is not an easy process to distinguish these modes and such practice is commonly performed by an experienced person in this field. Apparently, applying artificial intelligence to do such classification requires a combination of the basic infor...

متن کامل

Modulation Identification Using Neural Networks for Cognitive Radios

This paper presents a signal modulation classifier design using artificial neural networks. We analyze system-level issues including carrier synchronization, bandwidth estimation, and modulation classification. This is an extension of previous work with the addition of standardfree signal classification as well as an in-depth analysis of the feature space used in the neural network. The results...

متن کامل

A New Method for Intrusion Detection Using Genetic Algorithm and Neural Network

    The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...

متن کامل

Prediction of pore facies using GMDH-type neural networks: a case study from the South Pars gas field, Persian Gulf basin

The current study proposes a two-step approach for pore facies characterization in the carbonate reservoirs with an example from the Kangan and Dalanformations in the South Pars gas field. In the first step, pore facies were determined based on Mercury Injection Capillary Pressure (MICP) data incorporation with the Hierarchical Clustering Analysis (HCA) method. In the next step, polynomial meta...

متن کامل

A New Method for Intrusion Detection Using Genetic Algorithm and Neural Network

    The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010