Object-Based Urban Tree Species Classification Using Bi-Temporal WorldView-2 and WorldView-3 Images
نویسندگان
چکیده
Urban tree species mapping is an important prerequisite to understanding the value of urban vegetation in ecological services. In this study, we explored the potential of bi-temporal WorldView-2 (WV2, acquired on 14 September 2012) and WorldView-3 images (WV3, acquired on 18 October 2014) for identifying five dominant urban tree species with the object-based Support Vector Machine (SVM) and Random Forest (RF) methods. Two study areas in Beijing, China, Capital Normal University (CNU) and Beijing Normal University (BNU), representing the typical urban environment, were evaluated. Three classification schemes—classification based solely on WV2; WV3; and bi-temporal WV2 and WV3 images—were examined. Our study showed that the single-date image did not produce satisfying classification results as both producer and user accuracies of tree species were relatively low (44.7%–82.5%), whereas those derived from bi-temporal images were on average 10.7% higher. In addition, the overall accuracy increased substantially (9.7%–20.2% for the CNU area and 4.7%–12% for BNU). A thorough analysis concluded that near-infrared 2, red-edge and green bands are always more important than the other bands to classification, and spectral features always contribute more than textural features. Our results also showed that the scattered distribution of trees and a more complex surrounding environment reduced classification accuracy. Comparisons between SVM and RF classifiers suggested that SVM is more effective for urban tree species classification as it outperforms RF when working with a smaller amount and imbalanced distribution of samples.
منابع مشابه
Evaluation of Worldview-2 Imagery for Urban Land Cover Mapping Using the Interimage System
Mapping of urban land cover using remote sensing technology has been widely explored, especially with the recent availability of high resolution images and object-based processing techniques. This study uses the InterIMAGE system and WorldView-2 orbital sensor imagery, two technologies which are new and still little explored in urban studies, to classify land cover in five test-sites near to th...
متن کاملRoof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery
One of the most important tasks in urban remote sensing is the detection of impervious surfaces (IS), such as roofs and roads. However, detection of IS in heterogeneous areas still remains one of the most challenging tasks. In this study, detection of concrete roof using an object-based approach was proposed. A new rule-based classification was developed to detect concrete roof tile. This propo...
متن کاملTree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data
Tree species diversity is a key parameter to describe forest ecosystems. It is, for example, important for issues such as wildlife habitat modeling and close-to-nature forest management. We examined the suitability of 8-band WorldView-2 satellite data for the identification of 10 tree species in a temperate forest in Austria. We performed a Random Forest (RF) classification (object-based and pi...
متن کامل"Kill Two Birds with One Stone": Urban Tree Species Classification Using Bi-Temporal Pléiades Images to Study Nesting Preferences of an Invasive Bird
This study presents the results of object-based classifications assessing the potential of bi-temporal Pléiades images for mapping broadleaf and coniferous tree species potentially used by the ring-necked parakeet Psittacula krameri for nesting in the urban area of Marseille, France. The first classification was performed based solely on a summer Pléiades image (acquired on 28 July 2015) and th...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015