Dimerization Interface of 3-Hydroxyacyl-CoA Dehydrogenase Tunes the Formation of Its Catalytic Intermediate
نویسندگان
چکیده
3-Hydroxyacyl-CoA dehydrogenase (HAD, EC 1.1.1.35) is a homodimeric enzyme localized in the mitochondrial matrix, which catalyzes the third step in fatty acid β-oxidation. The crystal structures of human HAD and subsequent complexes with cofactor/substrate enabled better understanding of HAD catalytic mechanism. However, numerous human diseases were found related to mutations at HAD dimerization interface that is away from the catalytic pocket. The role of HAD dimerization in its catalytic activity needs to be elucidated. Here, we solved the crystal structure of Caenorhabditis elegans HAD (cHAD) that is highly conserved to human HAD. Even though the cHAD mutants (R204A, Y209A and R204A/Y209A) with attenuated interactions on the dimerization interface still maintain a dimerization form, their enzymatic activities significantly decrease compared to that of the wild type. Such reduced activities are in consistency with the reduced ratios of the catalytic intermediate formation. Further molecular dynamics simulations results reveal that the alteration of the dimerization interface will increase the fluctuation of a distal region (a.a. 60-80) that plays an important role in the substrate binding. The increased fluctuation decreases the stability of the catalytic intermediate formation, and therefore the enzymatic activity is attenuated. Our study reveals the molecular mechanism about the essential role of the HAD dimerization interface in its catalytic activity via allosteric effects.
منابع مشابه
Substrate specificities of peroxisomal members of short-chain alcohol dehydrogenase superfamily: expression and characterization of dehydrogenase part of Candida tropicalis multifunctional enzyme.
In addition to several other enzymes, the short-chain alcohol dehydrogenase superfamily includes a group of peroxisomal multifunctional enzymes involved in fatty acid and cholesterol side-chain beta-oxidation. Mammalian peroxisomal multifunctional enzyme type 2 (perMFE-2) is a 2-enoyl-CoA hydratase-2/(R)-3-hydroxyacyl-CoA dehydrogenase. As has been shown previously, perMFE-2 hydrates (24E)-3alp...
متن کاملIntrinsic alcohol dehydrogenase and hydroxysteroid dehydrogenase activities of human mitochondrial short-chain L-3-hydroxyacyl-CoA dehydrogenase.
The alcohol dehydrogenase (ADH) activity of human short-chain l-3-hydroxyacyl-CoA dehydrogenase (SCHAD) has been characterized kinetically. The k(cat) of the purified enzyme was estimated to be 2. 2 min(-1), with apparent K(m) values of 280 mM and 22microM for 2-propanol and NAD(+), respectively. The k(cat) of the ADH activity was three orders of magnitude less than the l-3-hydroxyacyl-CoA dehy...
متن کاملA New Type of a Multifunctional -Oxidation Enzyme in Euglena
The biochemical and molecular properties of the -oxidation enzymes from algae have not been investigated yet. The present study provides such data for the phylogenetically old alga Euglena (Euglena gracilis). A novel multifunctional -oxidation complex was purified to homogeneity by ammonium sulfate precipitation, density gradient centrifugation, and ion-exchange chromatography. Monospecific ant...
متن کاملIdentification and characterization of the 2-enoyl-CoA hydratases involved in peroxisomal beta-oxidation in rat liver.
In this study we attempted to determine the number of 2-enoyl-CoA hydratases involved in peroxisomal beta-oxidation. We therefore separated peroxisomal proteins from rat liver on several chromatographic columns and measured hydratase activities on the eluates with different substrates. The results indicate that rat liver peroxisomes contain two hydratase activities: (1) a hydratase activity ass...
متن کاملStructural enzymology comparisons of multifunctional enzyme, type‐1 (MFE1): the flexibility of its dehydrogenase part
Multifunctional enzyme, type-1 (MFE1) is a monomeric enzyme with a 2E-enoyl-CoA hydratase and a 3S-hydroxyacyl-CoA dehydrogenase (HAD) active site. Enzyme kinetic data of rat peroxisomal MFE1 show that the catalytic efficiencies for converting the short-chain substrate 2E-butenoyl-CoA into acetoacetyl-CoA are much lower when compared with those of the homologous monofunctional enzymes. The mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014