Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy.
نویسندگان
چکیده
Cartilage stiffness was measured ex vivo at the micrometer and nanometer scales to explore structure-mechanical property relationships at smaller scales than has been done previously. A method was developed to measure the dynamic elastic modulus, |E(*)|, in compression by indentation-type atomic force microscopy (IT AFM). Spherical indenter tips (radius = approximately 2.5 microm) and sharp pyramidal tips (radius = approximately 20 nm) were employed to probe micrometer-scale and nanometer-scale response, respectively. |E(*)| values were obtained at 3 Hz from 1024 unloading response curves recorded at a given location on subsurface cartilage from porcine femoral condyles. With the microsphere tips, the average modulus was approximately 2.6 MPa, in agreement with available millimeter-scale data, whereas with the sharp pyramidal tips, it was typically 100-fold lower. In contrast to cartilage, measurements made on agarose gels, a much more molecularly amorphous biomaterial, resulted in the same average modulus for both indentation tips. From results of AFM imaging of cartilage, the micrometer-scale spherical tips resolved no fine structure except some chondrocytes, whereas the nanometer-scale pyramidal tips resolved individual collagen fibers and their 67-nm axial repeat distance. These results suggest that the spherical AFM tip is large enough to measure the aggregate dynamic elastic modulus of cartilage, whereas the sharp AFM tip depicts the elastic properties of its fine structure. Additional measurements of cartilage stiffness following enzyme action revealed that elastase digestion of the collagen moiety lowered the modulus at the micrometer scale. In contrast, digestion of the proteoglycans moiety by cathepsin D had little effect on |E(*)| at the micrometer scale, but yielded a clear stiffening at the nanometer scale. Thus, cartilage compressive stiffness is different at the nanometer scale compared to the overall structural stiffness measured at the micrometer and larger scales because of the fine nanometer-scale structure, and enzyme-induced structural changes can affect this scale-dependent stiffness differently.
منابع مشابه
Effect of Age and Cytoskeletal Elements on the Indentation-Dependent Mechanical Properties of Chondrocytes
Articular cartilage chondrocytes are responsible for the synthesis, maintenance, and turnover of the extracellular matrix, metabolic processes that contribute to the mechanical properties of these cells. Here, we systematically evaluated the effect of age and cytoskeletal disruptors on the mechanical properties of chondrocytes as a function of deformation. We quantified the indentation-dependen...
متن کاملDepth-Dependent Anisotropy of the Micromechanical Properties of Porcine Articular Cartilage Measured via Atomic Force Microscopy
INTRODUCTION: Articular cartilage exhibits distinct differences in biochemical composition [1] and structure [2] of the extracellular matrix (ECM) with distance from the articular surface. These differences result in depth-dependent biomechanical properties [3, 4, 5] that can have a significant effect on the mechanical environment of the chondrocyte [6, 7]. An additional structural component of...
متن کاملSpatial mapping of the biomechanical properties of the pericellular matrix of articular cartilage measured in situ via atomic force microscopy.
In articular cartilage, chondrocytes are surrounded by a narrow region called the pericellular matrix (PCM), which is biochemically, structurally, and mechanically distinct from the bulk extracellular matrix (ECM). Although multiple techniques have been used to measure the mechanical properties of the PCM using isolated chondrons (the PCM with enclosed cells), few studies have measured the biom...
متن کاملTime-dependent nanomechanics of cartilage.
In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus E(ind), force-relaxation time constant τ, magnitude of dynamic complex modulus |E(∗)|, phase angle δ between force and indentation depth, sto...
متن کاملComparison of human and animal femoral head chondral properties and geometries.
Investigations into tissue-preserving orthopaedic treatments should consider the tribology of articular cartilage; where simulations using animal joints are a predominant choice. However, very few studies have investigated the differences between human and animal cartilage. The aim of the present study was to characterise the differences in geometry and mechanical properties of human, porcine, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 86 5 شماره
صفحات -
تاریخ انتشار 2004