A priori estimation of a time step for numerically solving parabolic problems
نویسنده
چکیده
This work deals with the problem of choosing a time step for the numerical solution of boundary value problems for parabolic equations. The problem solution is derived using the fully implicit scheme, whereas a time step is selected via explicit calculations. The selection strategy consists of the following steps. First, using the explicit scheme, we calculate the solution at a new time level. Next, we employ this solution in order to obtain the solution at the previous time level (the implicit scheme, explicit calculations). This solution should be close to the solution of our problem at this time level with a prescribed accuracy. Such an algorithm leads to explicit formulas for the calculation of the time step and takes into account both the dynamics of the problem solution and changes in coefficients of the equation and in its right-hand side. The same formulas for the evaluation of the time step we get using a comparison of two approximate solutions, which are obtained using the explicit scheme with the primary time step and the step that is reduced by half. Numerical results are presented for a model parabolic boundary value problem, which demonstrate the robustness of the developed algorithm for the time step selection.
منابع مشابه
A numerical scheme for solving nonlinear backward parabolic problems
In this paper a nonlinear backward parabolic problem in one dimensional space is considered. Using a suitable iterative algorithm, the problem is converted to a linear backward parabolic problem. For the corresponding problem, the backward finite differences method with suitable grid size is applied. It is shown that if the coefficients satisfy some special conditions, th...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملImplementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary condition
The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...
متن کاملNumerical solving the identification problem for the lower coefficient of parabolic equation
In the theory and practice of inverse problems for partial differential equations (PDEs) much attention is paid to the problem of the identification of coefficients from some additional information. This work deals with the problem of determining in a multidimensional parabolic equation the lower coefficient that depends on time only. To solve numerically a nonlinear inverse problem, linearized...
متن کاملAn Adaptive Immersed Finite Element Method with Arbitrary Lagrangian-eulerian Scheme for Parabolic Equations in Time Variable Domains
We first propose an adaptive immersed finite element method based on the a posteriori error estimate for solving elliptic equations with non-homogeneous boundary conditions in general Lipschitz domains. The underlying finite element mesh need not fit the boundary of the domain. Optimal a priori error estimate of the proposed immersed finite element method is proved. The immersed finite element ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1311.2780 شماره
صفحات -
تاریخ انتشار 2013