Enhanced Outcoupling in Organic Light-Emitting Diodes via a High- Index Contrast Scattering Layer

نویسندگان

  • Tae-Wook Koh
  • Joshua A. Spechler
  • Kyung Min Lee
  • Craig B. Arnold
  • Barry P. Rand
چکیده

Despite high internal quantum efficiencies, planar organic light-emitting diodes (OLEDs) typically suffer from limited outcoupling efficiencies. To improve this outcoupling efficiency, we have developed a new thin (∼2 μm) light scattering layer that employs air voids (low-index scattering centers) embedded in a high-index polyimide matrix to effectively frustrate the substrate-trapped light, increasing the outcoupling efficiency. The porous polyimide scattering layers are created through the simple and scalable fabrication technique of phase inversion. The optical properties of the scattering layers have been characterized via microscopy, transmittance/haze measurements, and ellipsometry, which demonstrate the excellent scattering properties of these layers. We have integrated these films into a green OLED stack, where they show a 65% enhancement of the external quantum efficiency and a 77% enhancement of the power efficiency. Furthermore, we have integrated these layers into a white OLED and observed similar enhancements. Both the green and white OLEDs additionally demonstrate excellent color stability over wide viewing angles with the integration of this thin scattering layer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic materials in OLEDs for high outcoupling efficiency.

We present the results of an optical study in which we evaluate the effect of anisotropic electron transport layers (ETL) and anisotropic hole transport layers (HTL) on the outcoupling efficiency of bottom emitting organic light emitting diodes (OLEDs). We demonstrate that optical anisotropy can have a profound influence on the outcoupling efficiency and introduce a number of design rules which...

متن کامل

Exceptionally efficient organic light emitting devices using high refractive index substrates.

Organic light emitting devices (OLEDs) are now used in commercial cell phones and flat screen displays, but may become even more successful in lighting applications, in which large area, high efficiency, long lifetime and low cost are essential. Due to the relatively high refractive index of the organic layers, conventional planar bottom emitting OLEDs have a low outcoupling efficiency. Various...

متن کامل

Coherent mode coupling in highly efficient top-emitting OLEDs on periodically corrugated substrates.

Bragg scattering at one-dimensional corrugated substrates allows to improve the light outcoupling from top-emitting organic light-emitting diodes (OLEDs). The OLEDs rely on a highly efficient phosphorescent pin stack and contain metal electrodes that introduce pronounced microcavity effects. A corrugated photoresist layer underneath the bottom electrode introduces light scattering. Compared to ...

متن کامل

Strategies for enhanced light extraction from surface plasmons in organic light-emitting diodes

Organic light-emitting diodes (OLEDs) usually exhibit a low light outcoupling efficiency of only 20%. Typically, more than 30% of the available power is lost to surface plasmons (SPs). Consequently, the overall efficiency could be strongly enhanced by recovering SP losses. Therefore, three suitable techniques for extracting SPs, that is index coupling, prism coupling and grating coupling, are d...

متن کامل

Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography

High efficiency white organic light emitting devices WOLEDs with optical outcoupling enhanced by hexagonal polymethylmethacrylate microlens arrays fabricated by imprint lithography on a glass substrate are demonstrated. Monte Carlo and finite difference time domain simulations of the emitted light are used to optimize the microlens design. The measured enhancement of light outcoupling and the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015