Mitochondrial dysfunction as the cause of the failure to precondition the diabetic human myocardium.
نویسندگان
چکیده
OBJECTIVES We have shown previously that human diabetic myocardium cannot be preconditioned. Here, we have investigated the basis of this cardioprotective deficit. METHODS Right atrial sections from four patient groups-non-diabetic, insulin-dependent diabetes mellitus (IDDM), non-insulin-dependent diabetes mellitus (NIDDM) receiving glibenclamide, and NIDDM receiving metformin-were subjected to one of the following protocols: aerobic control, simulated ischemia/reoxygenation, ischemic preconditioning before ischemia, and pharmacological preconditioning with alpha 1 agonist phenylephrine, adenosine, the mito-K(ATP) channel opener diazoxide, the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate (PMA), or the p38 mitogen-activated protein kinase (p38MAPK) activator anisomycin. Cellular damage was assessed using creatine kinase leakage and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) reduction. In mitochondrial preparations from non-diabetic and diabetic myocardium, mitochondrial membrane potential (Psi(m)) was assessed using JC-1 dye, and production of reactive oxygen species was determined. RESULTS Preconditioning with ischemia, phenylephrine, adenosine, or diazoxide failed to protect diabetic myocardium. However, activation of PKC or p38MAPK was still protective. In isolated non-diabetic mitochondria, diazoxide partially depolarized Psi(m), an effect not seen in diabetic mitochondria. Furthermore, diazoxide increased superoxide production in non-diabetic but not in diabetic mitochondria. CONCLUSIONS Our results show that the cardioprotective deficit in diabetic myocardium arises upstream of PKC and p38MAPK. We suggest that mitochondrial dysfunction in diabetic myocardium, possibly dysfunctional mito-K(ATP) channels, leads to impaired depolarization and superoxide production, and that this causes the inability to respond to preconditioning.
منابع مشابه
Failure to precondition pathological human myocardium.
OBJECTIVES We investigated the effects of ischemic preconditioning (PC) on diabetic and failing human myocardium and the role of mitochondrial KATP channels on the response in these diseased tissues. BACKGROUND There is conflicting evidence to suggest that PC is a healthy heart phenomenon. METHODS Right atrial appendages were obtained from seven different groups of patients: nondiabetics, d...
متن کاملRelationship between Mitochondrial Dysfunction and Multiple Sclerosis: A Review Study
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system that inflammation, demyelination, oligodendrocyte loss, gliosis, axonal injury and neurodegeneration are the main histopathological hallmarks of the disease. Although MS was classically thought as a demyelinating disease, but axonal injury occurs commonly in acute inflammatory lesions. In MS mi...
متن کاملCombined postconditioning with ischemia and cyclosporine-A restore oxidative stress and histopathological changes in reperfusion injury of diabetic myocardium
Objective(s): Chronic diabetes impedes cardioprotection in reperfusion injury and hence protecting the diabetic heart would have important outcomes. In this study, we evaluated whether combined postconditioning with ischemia and cyclosporine-A can restore oxidative stress and histopathological changes in reperfusion injury of the diabetic myocardium. Materials and Methods: Streptozocin-induced ...
متن کاملEffect of 6 weeks of resistance exercise preconditioning on mitochondrial dynamics in cardiac tissue of diabetic rats
Background and Objectives: Diabetic cardiomyopathy refers to changes in the heart as a result of altered glucose homeostasis, leading to ventricular dysfunction, and it is associated with the mitochondrial abnormality. Since physical exercise has been known as cardioprotective, the aim of the present study was to investigate the effect of 6 weeks of resistance exercise preconditioning on mitoch...
متن کاملThe Effect of Six Weeks of Endurance Training on Mitochondrial Level of OPA-1 Quadriceps in Streptozotocin-induced Diabetic Rats
Introduction: Mitochondrial dynamic disorders are attributed to many diseases such as diabetes. MFN2 and OPA-1 proteins are the main regulators of fusion, and DRP1 is the essential protein regulating mitochondrial fission. Increasing or decreasing the expression of relevant genes will cause an imbalance between these two processes. This study evaluated the effect of six weeks of aerobic trainin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cardiovascular research
دوره 69 2 شماره
صفحات -
تاریخ انتشار 2006