Local Structure Prediction with Local Structure-based Sequence Profiles
نویسندگان
چکیده
MOTIVATION A large body of experimental and theoretical evidence suggests that local structural determinants are frequently encoded in short segments of protein sequence. Although the local structural information, once recognized, is particularly useful in protein structural and functional analyses, it remains a difficult problem to identify embedded local structural codes based solely on sequence information. RESULTS In this paper, we describe a local structure prediction method aiming at predicting the backbone structures of nine-residue sequence segments. Two elements are the keys for this local structure prediction procedure. The first key element is the LSBSP1 database, which contains a large number of non-redundant local structure-based sequence profiles for nine-residue structure segments. The second key element is the consensus approach, which identifies a consensus structure from a set of hit structures. The local structure prediction procedure starts by matching a query sequence segment of nine consecutive amino acid residues to all the sequence profiles in the local structure-based sequence profile database (LSBSP1). The consensus structure, which is at the center of the largest structural cluster of the hit structures, is predicted to be the native state structure adopted by the query sequence segment. This local structure prediction method is assessed with a large set of random test protein structures that have not been used in constructing the LSBSP1 database. The benchmark results indicate that the prediction capacities of the novel local structure prediction procedure exceed the prediction capacities of the local backbone structure prediction methods based on the I-sites library by a significant margin. AVAILABILITY All the computational and assessment procedures have been implemented in the integrated computational system PrISM.1 (Protein Informatics System for Modeling). The system and associated databases for LINUX systems can be downloaded from the website: http://www.columbia.edu/~ay1/.
منابع مشابه
Link Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملLOCAL BASES WITH STRATIFIED STRUCTURE IN $I$-TOPOLOGICAL VECTOR SPACES
In this paper, the concept of {sl local base with stratifiedstructure} in $I$-topological vector spaces is introduced. Weprove that every $I$-topological vector space has a balanced localbase with stratified structure. Furthermore, a newcharacterization of $I$-topological vector spaces by means of thelocal base with stratified structure is given.
متن کاملDetermining the Likelihood of Damage in Concrete and its Physical Structure
Applying renormalization group theory to evaluate the safety of overall structure, local damage probability must be obtained at first. According to the results of unit detection test and numerical simulation, the methods how to determine local damage probability was presented in the paper. For small unit, meaning the unit size is far less than the maximum primitive cell or the structure size, i...
متن کاملA Knowledge-Based Approach to Protein Local Structure Prediction
Local structure prediction can facilitate ab initio structure prediction, protein threading, and remote homology detection. However, previous approaches to local structure prediction suffer from poor accuracy. In this paper, we propose a knowledge-based prediction method that assigns a measure called the local match rate to each position of an amino acid sequence to estimate the confidence of o...
متن کاملHyplosp: a Knowledge-based Approach to Protein Local Structure Prediction
Local structure prediction can facilitate ab initio structure prediction, protein threading, and remote homology detection. However, the accuracy of existing methods is limited. In this paper, we propose a knowledge-based prediction method that assigns a measure called the local match rate to each position of an amino acid sequence to estimate the confidence of our method. Empirically, the accu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 19 10 شماره
صفحات -
تاریخ انتشار 2003