Dynamical symmetry breaking with optimal control: Reducing the number of pieces

نویسندگان

  • Matthew J. M. Power
  • Gabriele De Chiara
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Path integrals and symmetry breaking for optimal control theory

This paper considers linear-quadratic control of a non-linear dynamical system subject to arbitrary cost. I show that for this class of stochastic control problems the non-linear Hamilton-Jacobi-Bellman equation can be transformed into a linear equation. The transformation is similar to the transformation used to relate the classical Hamilton-Jacobi equation to the Schrödinger equation. As a re...

متن کامل

. ge n - ph ] 3 1 A ug 2 00 5 Path integrals and symmetry breaking for optimal control theory

This paper considers linear-quadratic control of a non-linear dynamical system subject to arbitrary cost. I show that for this class of stochastic control problems the non-linear Hamilton-Jacobi-Bellman equation can be transformed into a linear equation. The transformation is similar to the transformation used to relate the classical Hamilton-Jacobi equation to the Schrödinger equation. As a re...

متن کامل

O ct 2 00 5 Path integrals and symmetry breaking for optimal control theory

This paper considers linear-quadratic control of a non-linear dynamical system subject to arbitrary cost. I show that for this class of stochastic control problems the non-linear Hamilton-Jacobi-Bellman equation can be transformed into a linear equation. The transformation is similar to the transformation used to relate the classical Hamilton-Jacobi equation to the Schrödinger equation. As a re...

متن کامل

M ay 2 00 5 Path integrals and symmetry breaking for optimal control theory

This paper considers linear-quadratic control of a non-linear dynamical system subject to arbitrary cost. I show that for this class of stochastic control problems the non-linear Hamilton-Jacobi-Bellman equation can be transformed into a linear equation. The transformation is similar to the transformation used to relate the classical Hamilton-Jacobi equation to the Schrödinger equation. As a re...

متن کامل

ar X iv : p hy si cs / 0 50 50 66 v 4 7 O ct 2 00 5 Path integrals and symmetry breaking for optimal control theory

This paper considers linear-quadratic control of a non-linear dynamical system subject to arbitrary cost. I show that for this class of stochastic control problems the non-linear Hamilton-Jacobi-Bellman equation can be transformed into a linear equation. The transformation is similar to the transformation used to relate the classical Hamilton-Jacobi equation to the Schrödinger equation. As a re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018