Auxiliary Variables for Markov Random Fields with Higher Order Interactions
نویسنده
چکیده
Abstract. Markov Random Fields are widely used in many image processing applications. Recently the shortcomings of some of the simpler forms of these models have become apparent, and models based on larger neighbourhoods have been developed. When single-site updating methods are used with these models, a large number of iterations are required for convergence. The Swendsen-Wang algorithm and Partial Decoupling have been shown to give potentially enormous speed-up to computation with the simple Ising and Potts models. In this paper we show how the same ideas can be used with binary Markov Random Fields with essentially any support to construct auxiliary variable algorithms. However, because of the complexity and certain characteristics of the models, the computational gains are limited.
منابع مشابه
Auxilliary Variables for Markov Random Fields with Higher Order Interactions
Markov Random Fields are widely used in many image processing applications. Recently the shortcomings of some of the simpler forms of these models have become apparent, and models based on larger neighbourhoods have been developed. When single-site updating methods are used with these models, a large number of iterations are required for convergence. The Swendsen-Wang algorithm and Partial Deco...
متن کاملOrdinal Random Fields for Recommender Systems
Recommender Systems heavily rely on numerical preferences, whereas the importance of ordinal preferences has only been recognised in recent works of Ordinal Matrix Factorisation (OMF). Although the OMF can effectively exploit ordinal properties, it captures only the higher-order interactions among users and items, without considering the localised interactions properly. This paper employs Marko...
متن کاملApproximated Curvature Penalty in Non-rigid Registration Using Pairwise MRFs
Labeling of discrete Markov Random Fields (MRFs) has become an attractive approach for solving the problem of non-rigid image registration. Here, regularization plays an important role in order to obtain smooth deformations for the inherent ill-posed problem. Smoothness is achieved by penalizing the derivatives of the displacement field. However, efficient optimization strategies (based on iter...
متن کاملConjugate Gamma Markov Random Fields for Modelling Nonstationary Sources
In modelling nonstationary sources, one possible strategy is to define a latent process of strictly positive variables to model variations in second order statistics of the underlying process. This can be achieved, for example, by passing a Gaussian process through a positive nonlinearity or defining a discrete state Markov chain where each state encodes a certain regime. However, models with s...
متن کاملParallelizable Sampling of Markov Random Fields
Markov Random Fields (MRFs) are an important class of probabilistic models which are used for density estimation, classification, denoising, and for constructing Deep Belief Networks. Every application of an MRF requires addressing its inference problem, which can be done using deterministic inference methods or using stochastic Markov Chain Monte Carlo methods. In this paper we introduce a new...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999