Kernel Methods for Minimally Supervised WSD

نویسندگان

  • Claudio Giuliano
  • Alfio Massimiliano Gliozzo
  • Carlo Strapparava
چکیده

We present a semi-supervised technique for word sense disambiguation that exploits external knowledge acquired in an unsupervised manner. In particular, we use a combination of basic kernel functions to independently estimate syntagmatic and domain similarity, building a set of word-expert classifiers that share a common domain model acquired from a large corpus of unlabeled data. The results show that the proposed approach achieves state-of-the-art performance on a wide range of lexical sample tasks and on the English all-words task of Senseval-3, although it uses a considerably smaller number of training examples than other methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Fuzzy C-Means Clustering for Word Sense Disambiguation in

Word sense disambiguation (WSD) in biomedical texts is important. The majority of existing research primarily focuses on supervised learning methods and knowledge-based approaches. Implementing these methods requires significant human-annotated corpus, which is not easily obtained. In this paper, we developed an unsupervised system for WSD in biomedical texts. First, we predefine the number of ...

متن کامل

Unsupervised WSD based on Automatically Retrieved Examples: The Importance of Bias

This paper explores the large-scale acquisition of sense-tagged examples for Word Sense Disambiguation (WSD). We have applied the “WordNet monosemous relatives” method to construct automatically a web corpus that we have used to train disambiguation systems. The corpus-building process has highlighted important factors, such as the distribution of senses (bias). The corpus has been used to trai...

متن کامل

A New Minimally-Supervised Framework for Domain Word Sense Disambiguation

We present a new minimally-supervised framework for performing domain-driven Word Sense Disambiguation (WSD). Glossaries for several domains are iteratively acquired from the Web by means of a bootstrapping technique. The acquired glosses are then used as the sense inventory for fullyunsupervised domain WSD. Our experiments, on new and gold-standard datasets, show that our wide-coverage framewo...

متن کامل

Bootstrapping Without the Boot

What: We like minimally supervised learning (bootstrapping). Let’s convert it to unsupervised learning (“strapping”). How: If the supervision is so minimal, let’s just guess it! Lots of guesses lots of classifiers. Try to predict which one looks plausible (!?!). We can learn to make such predictions. Results (on WSD): Performance actually goes up! (Unsupervised WSD for translational senses, Eng...

متن کامل

Word Sense Induction and Disambiguation Rivaling Supervised Methods

Word Sense Disambiguation (WSD) aims to determine the meaning of a word in context and successful approaches are known to benefit many applications in Natural Language Processing. Although, supervised learning has been shown to provide superior WSD performance, current sense-annotated corpora do not contain a sufficient number of instances per word type to train supervised systems for all words...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Linguistics

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2009