Structure and Energetics of Dislocations at Micro- Structured Complementary Interfaces Govern Adhesion
نویسنده
چکیده
Highly enhanced adhesion can be achieved between surfaces patterned with complementary micro-channel structures. An elastic material, poly(dimethylsiloxane) (PDMS), is used to fabricate such surfaces by molding into a silicon master with micro-channel profi les patterned by photolithography. For each pair of complementary surfaces, dislocation defects are observed in the form of visible striations, where ridges fail to fully insert into the channels, and the rotational misalignment angle was found to be the key factor controlling the dislocation distribution and adhesion strength. Adhesion between complementary interfaces, as measured by energy release rate required to propagate an interfacial crack, can be enhanced by up to 30 times compared to a fl at control depending on the misalignment angle. The ability to control the orientation and periodicity of dislocation patterns by changing misalignment angle makes this system eminently controllable. This system could be a useful experimental tool in assisting research on geometry controlled adhesion, while providing a test-bed for stability theories of interacting dislocations and crack fronts.
منابع مشابه
DISLOCATIONS STRUCTURE AND SCATTERING PHENOMENON IN CRYSTALLINE CELL SIZE OF 2024 AL ALLOY DEFORMED BY ONE PASS OF ECAP AT ROOM TEMPERATURE
Variation in microstructural features of 2024 aluminum alloy plastically deformed by equal channel angular pressing (ECAP) at room temperature, was investigated by X-Ray diffraction in this work. These include dislocation density dislocation characteristic and the cell size of crystalline domains. Dislocations contrast factor was calculated using elastic constants of the alloy such as C 11, C 2...
متن کاملReducing the adhesion between surfaces using surface structuring with PS latex particle.
The adhesion between a micro-object and a microgripper end-effector is an important problem in micromanipulation. Canceling or reducing this force is a great challenge. This force is directly linked to the surface chemical structure of the object and the gripper. We propose to reduce the adhesion force by using a self-assembled monolayer structuring on one surface. The surface was structured by...
متن کاملComputational design of patterned interfaces using reduced order models
Patterning is a familiar approach for imparting novel functionalities to free surfaces. We extend the patterning paradigm to interfaces between crystalline solids. Many interfaces have non-uniform internal structures comprised of misfit dislocations, which in turn govern interface properties. We develop and validate a computational strategy for designing interfaces with controlled misfit disloc...
متن کاملWear Behavior in Micro and Nano-Structured WC-9Co-0.7VC Cemented Carbide Produced by Rapid Hot Press Sintering
The effect of CaO on the formation of β- and γ-zirconia nanoparticles from α-zirconia was investigated and their stability evaluated via mechanical activation. α-ZrO2+8.5wt%CaO powder was milled for 2-150 hours with ball-to-powder weight ratios (BPWR) of 40:1 and 60:1. Structural evaluations were conducted using X-Ray diffraction and scanning electron microscope (SEM). Thermal analysis wa...
متن کاملEffect of milling time and microwave sintering on microhardness and electrical properties of nano and micro structured cordierite
The purpose of this research is to investigate the mechanical and electrical properties of nano structured cordierite. Nano grain size powders were synthesized through mechanical activation by high-energy ball milling of the starting powders containing 34.86 wt% Al2O3, 51.36 wt% SiO2, and 13.78 wt% MgO. Samples were prepared by conventional and microwave sintering at 1390°C. SEM observations il...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012