An Approach to Enhance the Quality of Recommendation Using Collaborative Tagging

نویسندگان

  • Latha Banda
  • K. K. Bharadwaj
چکیده

Collaborative labeling portrays the process by which numerous users put in metadata in the form of keywords to shared data. Nowadays, collaborative labeling has grown in reputation on the web, on sites that permit users to label bookmarks, photographs and other details. It has been recently become useful and well known as one effective way of classifying items for future search, sharing information, and filtering. So, as to predict the future search of users, we propose a novel collaborative tagging-based page recommendation algorithm using fuzzy classifier. The method consists of three phases: Grouping, Rule Generation Phase and Page Recommendation Phase. In the proposed method, we calculate the resemblance of users in selecting tags and thereby, calculate the nearest neighbors of each user and cluster them. Then, the priority of tags and items for each user is calculated for constructing a Nominal Label Matrix and Nominal Page Matrix. Finally, the fuzzy rules are generated for page recommendation. The experimentation is carried out on delicious datasets and the experimental results ensured that the proposed algorithm has achieved the maximum hit ratio of 6.6% for neighborhood size of 20, which is higher than the existing technique which obtained only 5.5%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Social Tags and User Rating Patterns for Collaborative Filtering

The overwhelming supply of online information on the Web makes finding better ways to separate important information from the noisy data ever more important. Recommender systems may help users deal with the information overloading issue, yet their performance appears to have stalled in currently available approaches. In this study, the authors propose and examine a novel user profiling approach...

متن کامل

Intelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering

During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...

متن کامل

QoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering

Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

SEIMCHA: a new semantic image CAPTCHA using geometric transformations

As protection of web applications are getting more and more important every day, CAPTCHAs are facing booming attention both by users and designers. Nowadays, it is well accepted that using visual concepts enhance security and usability of CAPTCHAs. There exist few major different ideas for designing image CAPTCHAs. Some methods apply a set of modifications such as rotations to the original imag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Computational Intelligence Systems

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014