Antisense RNA Stabilization Induces Transcriptional Gene Silencing via Histone Deacetylation in S. cerevisiae
نویسندگان
چکیده
Genome-wide studies in S. cerevisiae reveal that the transcriptome includes numerous antisense RNAs as well as intergenic transcripts regulated by the exosome component Rrp6. We observed that upon the loss of Rrp6 function, two PHO84 antisense transcripts are stabilized, and PHO84 gene transcription is repressed. Interestingly, the same phenotype is observed in wild-type cells during chronological aging. Epistasis and chromatin immunoprecipitation experiments indicate that the loss of Rrp6 function is paralleled by the recruitment of Hda1 histone deacetylase to PHO84 and neighboring genes. However, histone deacetylation is restricted to PHO84, suggesting that Hda1 activity depends on antisense RNA. Accordingly, the knockdown of antisense production prevents PHO84 gene repression, even in the absence of Rrp6. Together, our data indicate that the stabilization of antisense transcripts results in PHO84 gene repression via a mechanism distinct from transcription interference and that the modulation of Rrp6 function contributes to gene regulation by inducing RNA-dependent epigenetic modifications.
منابع مشابه
Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8.
Relatively little is known about the regulatory mechanisms of the Drosha/DGCR8 complex, which processes miRNAs at the initial step of biogenesis. We found that histone deacetylase 1 (HDAC1) increases the expression levels of mature miRNAs despite repressing the transcription of host genes. HDAC1 is an integral component of the Drosha/DGCR8 complex and enhances miRNA processing by increasing the...
متن کاملArabidopsis Homologs of Retinoblastoma-Associated Protein 46/48 Associate with a Histone Deacetylase to Act Redundantly in Chromatin Silencing
RNA molecules such as small-interfering RNAs (siRNAs) and antisense RNAs (asRNAs) trigger chromatin silencing of target loci. In the model plant Arabidopsis, RNA-triggered chromatin silencing involves repressive histone modifications such as histone deacetylation, histone H3 lysine-9 methylation, and H3 lysine-27 monomethylation. Here, we report that two Arabidopsis homologs of the human histon...
متن کاملRapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae
The target of rapamycin (TOR) kinase is an evolutionarily conserved key regulator of eukaryotic cell growth and proliferation. Recently, it has been reported that inhibition of TOR signaling pathway can delay aging and extend lifespan in several eukaryotic organisms, but how lifespan extension is mediated by inhibition of TOR signaling is poorly understood. Here we report that rapamycin treatme...
متن کاملRNA Polymerase I Propagates Unidirectional Spreading of rDNA Silent Chromatin
The ribosomal DNA (rDNA) tandem array in Saccharomyces cerevisiae induces transcriptional silencing of RNA polymerase II-transcribed genes. This SIR2-dependent form of repression (rDNA silencing) also functions to limit rDNA recombination and is involved in life span control. In this report, we demonstrate that rDNA silencing spreads into the centromere-proximal unique sequence located downstre...
متن کاملThe Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae.
The replication of eukaryotic genomes follows a temporally staged program, in which late origin firing often occurs within domains of altered chromatin structure(s) and silenced genes. Histone deacetylation functions in gene silencing in some late-replicating regions, prompting an investigation of the role of histone deacetylation in replication timing control in Saccharomyces cerevisiae. Delet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 131 شماره
صفحات -
تاریخ انتشار 2007