Receding Horizon Trajectory Optimization for Simultaneous Signal Landscape Mapping and Receiver Localization
نویسندگان
چکیده
A receiver with no a priori knowledge about its own states is dropped in an unknown environment comprising multiple signals of opportunity (SOPs) transmitters. Assuming that the receiver could control its maneuvers in the form of acceleration commands, two problems are considered. First, the minimal conditions under which such environment is completely observable are established. It is shown that receiver-controlled maneuvers reduce the minimal required a priori information about the environment for complete observability. Second, the trajectories that the receiver should traverse in order to build a highfidelity signal landscape map of the environment, while simultaneously localizing itself within this map in space and time with high accuracy are prescribed. To this end, the one-step look-ahead (greedy) strategy is compared to the multi-step look-ahead (receding horizon) strategy. The limitations and achieved improvements in the map quality and localization accuracy due to the receding horizon strategy are quantified, and the associated computational burden is discussed.
منابع مشابه
Adaptive Planning Horizon Based on Information Velocity for Vision-Based Navigation
This paper presents a receding horizon planning algorithm for vision-based navigation using bearings-only SLAM that adapts the planning horizon to the velocity of the information gained about the environment. Bearings-only SLAM has an inherent dynamic observability property such that specific motion is needed in order to determine the relative positions between the camera and obstacles. Thus, t...
متن کاملIntegration of model-predictive scheduling, dynamic real-time optimization and output tracking for a wastewater treatment process
A hierarchical control architecture for the integration of scheduling decisions, dynamic real-time optimization and tracking control is proposed. It is shown how the discretecontinuous problem of simultaneous scheduling and trajectory optimization on a receding horizon can be integrated within the upper control layer of a two-layer architecture. On the upper layer, the optimal plant strategy de...
متن کاملPoint to Point ILC with Receding Horizon Optimization Approach
Iterative learning control is a control technique used for the tracking of a finite duration trajectory. Iterative learning control (ILC) with focus on speed of tracking specific points and tracking error on these points is analyzed in this paper. A technique is introduced which employs the receding horizon optimization to track the points along with the iterative learning control is introduced...
متن کاملEfficiency of Target Location Scenarios in the Multi-Transmitter Multi-Receiver Passive Radar
Multi-transmitter multi-receiver passive radar, which locates target in the surveillance area by the reflected signals of the available opportunistic transmitter from the target, is of interest in many applications. In this paper, we investigate different signal processing scenarios in multi-transmitter multi-receiver passive radar. These scenarios include decentralized processing of reference ...
متن کاملConvex Receding Horizon Control in Non-Gaussian Belief Space
One of the main challenges in solving partially observable control problems is planning in high-dimensional belief spaces. Essentially, it is necessary to plan in the parameter space of all relevant probability distributions over the state space. The literature has explored different planning technologies including trajectory optimization [8, 6] and roadmap methods [12, 4]. Unfortunately, these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013