Hadamard Product Decomposition and Mutually Exclusive Matrices on Network Structure and Utilization
نویسندگان
چکیده
Graphs are very important mathematical structures used in many applications, one of which is transportation science. When dealing with transportation networks, one deals not only with the network structure, but also with information related to the utilization of the elements of the network, which can be shown using flow and origin-destination matrices. This paper extends an algebraic model used to relate all these components by deriving additional relationships and constructing a more structured understanding of the model. Specifically, the paper introduces the concept of mutually exclusive matrices, and shows their effect when decomposing the components of a Hadamard product on matrices. Keywords— network theory and technology, ICT, intelligent transportation
منابع مشابه
Isolated Hadamard Matrices from Mutually Unbiased Product Bases
A new construction of complex Hadamard matrices of composite order d = pq, with primes p, q, is presented which is based on pairs of mutually unbiased bases containing only product states. We illustrate the method for many product dimensions d < 100 by analytically deriving complex Hadamard matrices, both with zero and non-zero defect. In particular, we obtain at least 12 new isolated Butson-ty...
متن کاملWeak log-majorization inequalities of singular values between normal matrices and their absolute values
This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$. Some applications to these inequalities are also given. In addi...
متن کاملSystems of mutually unbiased Hadamard matrices containing real and complex matrices
We use combinatorial and Fourier analytic arguments to prove various non-existence results on systems of real and complex unbiased Hadamard matrices. In particular, we prove that a complete system of complex mutually unbiased Hadamard matrices (MUHs) in any dimension cannot contain more than one real Hadamard matrix. We also give new proofs of several known structural results in low dimensions.
متن کاملAn angular momentum approach to quadratic Fourier transform , Hadamard matrices , Gauss sums , mutually unbiased bases , unitary group and Pauli group
The construction of unitary operator bases in a finite-dimensional Hilbert space is reviewed through a nonstandard approach combinining angular momentum theory and representation theory of SU(2). A single formula for the bases is obtained from a polar decomposition of SU(2) and analysed in terms of cyclic groups, quadratic Fourier transforms, Hadamard matrices and generalized Gauss sums. Weyl p...
متن کاملMutually Unbiased Bush-type Hadamard Matrices and Association Schemes
It was shown by LeCompte, Martin, and Owens in 2010 that the existence of mutually unbiased Hadamard matrices and the identity matrix, which coincide with mutually unbiased bases, is equivalent to that of a Q-polynomial association scheme of class four which is both Q-antipodal and Q-bipartite. We prove that the existence of a set of mutually unbiased Bush-type Hadamard matrices is equivalent t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1510.01276 شماره
صفحات -
تاریخ انتشار 2014