Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS.
نویسندگان
چکیده
Factors that regulate leukocyte entry and spread through CNS parenchyma during different types of CNS insults are incompletely understood. Reactive astrocytes have been implicated in restricting the spread of leukocytes from damaged into healthy parenchyma during the acute and local innate inflammatory events that follow CNS trauma, but the roles of reactive astrocytes during the chronic and widespread CNS inflammation associated with adaptive or acquired immune responses are uncertain. Here, we investigated the effects of transgenically targeted ablation of proliferating, scar-forming reactive astrocytes on the acquired immune inflammation associated with experimental autoimmune encephalitis (EAE). In wild-type mice with EAE, we found that reactive astrocytes densely surrounded perivascular clusters of leukocytes in a manner reminiscent of astrocyte scar formation after CNS trauma. Transgenically targeted ablation of proliferating astrocytes disrupted formation of these perivascular scars and was associated with a pronounced and significant increase in leukocyte entry into CNS parenchyma, including immunohistochemically identified macrophages, T lymphocytes and neutrophils. This exacerbated inflammation was associated with a substantially more severe and rapidly fulminant clinical course. These findings provide experimental evidence that reactive astrocytes form scar-like perivascular barriers that restrict the influx of leukocytes into CNS parenchyma and protect CNS function during peripherally initiated, acquired immune inflammatory responses in the CNS. The findings suggest that loss or disruption of astrocyte functions may underlie or exacerbate the inflammation and pathologies associated with autoimmune diseases of the CNS, including multiple sclerosis.
منابع مشابه
O17: Inflammation in Brain and Spinal Cord
our goal in this paper is to describe and compare basic immunopathologic pattern of common demyelinating disorder, that is very important to choose the best treatment. The most common disorders are multiple sclerosis, neuromyelitis optica,Anti MOG associated disease,ADEM and autoimmune encephalitis. ADEM consists of ‘‘sleeves’’ of demyelination centered on small, engorge...
متن کاملP167: Key Role of Inflammation in Central Nervous System Damage and Disease; TNFα, IL-1
Inflammation is portion of the body's immune response and it is basically a host protective response to tissue ischemia, injury, autoimmune responses or infectious agents. Although the information presented so far points to a detrimental role for inflammation in central nervous system (CNS) disease, it may also be useful. CNS demonstrates characteristic of inflammation, and in response to damag...
متن کاملP 140: Stem Cells in Multiple Sclerosis
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS). Inflammation caused by immune cells destroy the myelin and then axon. CNS failure to complete repair results in permanent disabilities. Some types of stem cells have special potentials to repair these injuries and even cure MS. Neural crest stem cells with a mutual origin with CNS and the ability of differen...
متن کاملP151: The Effects of Boswellia Serrate on Central Nervous System
In the process of neuronal inflammation, an increased in inflammatory cytokines (IL-1β, IL-6 and TNF-α) from immune cells (leukocytes and macrophages), brain cells (microglia, astrocytes and neurons) and in hippocampus, amygdala occurs. Raise the level of cytokines result in reduced in production of molecules that are related to plasticity, especially BDNF, IGF-1 and VEGF. Microglia ...
متن کاملDistribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions.
CD200 is a membrane glycoprotein that suppresses immune activity via its receptor, CD200R. CD200-CD200R interactions have recently been considered to contribute to the "immune privileged" status of the central nervous system (CNS). The mechanisms by which these interactions take place are not well understood in part because there is limited detailed information on the distribution of CD200 and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 37 شماره
صفحات -
تاریخ انتشار 2009