Gambogic acid down-regulates MDM2 oncogene and induces p21(Waf1/CIP1) expression independent of p53.
نویسندگان
چکیده
Gambogic acid (GA), the natural compound extracted from gamboges, has recently been established as a potent anti-tumor agent. Although it was proved that GA enhances p53 protein level through inhibition of MDM2 in p53 wild-type cancer cells, the mechanisms of MDM2 inhibition especially with the absence of p53 are not fully understood. Herein we further studied the MDM2 regulation by GA and propose novel explanations of its unrecognized mechanism. Regardless of p53 status, GA reduced MDM2 expression in a concentration- and time-dependent manner. Moreover, the inhibitory effects were exhibited at both transcriptional and posttranslational levels. We found that P1 and P2 promoter of MDM2 were both responsive to GA, resulting in decreased Mdm2 RNA level. At the posttranslational level, GA promoted the autoubiquitination of MDM2, followed by proteasome-mediated degradation. Additionally, GA increased p21(Waf1/CIP1) expression in p53 null cancer cells, which was associated with GA-mediated impairing of the interaction between MDM2 and p21(Waf1/CIP1). Furthermore, the apoptosis, cytotoxicity and G2/M cell cycle arrest induced by GA were detected in both p53 wild-type and p53 null cancer cells. In vivo anti-tumor activity of GA was also confirmed in H1299 xenografts. It is concluded that GA down-regulates the MDM2 oncogene and exerts the anti-tumor activity independent of p53, and therefore provide more evidences for its therapeutic application.
منابع مشابه
Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway.
The oncoprotein MDM2, a major ubiquitin E3 ligase of tumor suppressor p53, has been suggested as a novel target for human cancer therapy based on its p53-dependent and p53-independent activities. We have identified curcumin, which has previously been shown to have anticancer activity, as an inhibitor of MDM2 expression. Curcumin down-regulates MDM2, independent of p53. In a human prostate cance...
متن کاملCaveolin-1 regulates the antagonistic pleiotropic properties of cellular senescence through a novel Mdm2/p53-mediated pathway.
We show that caveolin-1 is a novel binding protein for Mdm2. After oxidative stress, caveolin-1 sequesters Mdm2 away from p53, leading to stabilization of p53 and up-regulation of p21(Waf1/Cip1) in human fibroblasts. Expression of a peptide corresponding to the Mdm2 binding domain of caveolin-1 is sufficient to up-regulate p53 and p21(Waf1/Cip1) protein expression and induce premature senescenc...
متن کاملHuman papillomavirus 16/18 E6 oncoprotein is expressed in lung cancer and related with p53 inactivation.
Inactivation of p53 by human papillomavirus 16/18 E6 plays a crucial role in cervical tumorigenesis. To investigate the involvement of HPV16/18 in lung tumorigenesis, the association between HPV16 or HPV18 E6 and p53 protein expression in 122 lung tumors was evaluated by immunohistochemistry, and data showed that HPV16/18 E6 expression correlated inversely with p53 expression, which was further...
متن کاملp53-independent induction of G1 arrest and p21WAF1/CIP1 expression by ascofuranone, an isoprenoid antibiotic, through downregulation of c-Myc.
Ascofuranone has been shown to have antitumor activity, but the precise molecular mechanism by which it inhibits the proliferation of cancer cells remains unclear. Here, we study the effects of ascofuranone on cell cycle progression in human cancer cells and find that ascofuranone induces G(1) arrest without cytoxicity with upregulation of p53 and p21(WAF1/CIP1) while downregulating c-Myc and G...
متن کاملDownregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation
The leucine-rich repeat containing 8A (LRRC8A) protein is an essential component of the volume-sensitive organic anion channel (VSOAC), and using pharmacological anion channel inhibitors (NS3728, DIDS) and LRRC8A siRNA we have investigated its role in development of Cisplatin resistance in human ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatmen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer letters
دوره 284 1 شماره
صفحات -
تاریخ انتشار 2009