Relocation of active site carboxylates in major facilitator superfamily multidrug transporter LmrP reveals plasticity in proton interactions

نویسندگان

  • Asha V. Nair
  • Himansha Singh
  • Sagar Raturi
  • Arthur Neuberger
  • Zhen Tong
  • Ning Ding
  • Kelvin Agboh
  • Hendrik W. van Veen
چکیده

The expression of polyspecific membrane transporters is one important mechanism by which cells can obtain resistance to structurally different antibiotics and cytotoxic agents. These transporters reduce intracellular drug concentrations to subtoxic levels by mediating drug efflux across the cell envelope. The major facilitator superfamily multidrug transporter LmrP from Lactococcus lactis catalyses drug efflux in a membrane potential and chemical proton gradient-dependent fashion. To enable the interaction with protons and cationic substrates, LmrP contains catalytic carboxyl residues on the surface of a large interior chamber that is formed by transmembrane helices. These residues co-localise together with polar and aromatic residues, and are predicted to be present in two clusters. To investigate the functional role of the catalytic carboxylates, we generated mutant proteins catalysing membrane potential-independent dye efflux by removing one of the carboxyl residues in Cluster 1. We then relocated this carboxyl residue to six positions on the surface of the interior chamber, and tested for restoration of wildtype energetics. The reinsertion at positions towards Cluster 2 reinstated the membrane potential dependence of dye efflux. Our data uncover a remarkable plasticity in proton interactions in LmrP, which is a consequence of the flexibility in the location of key residues that are responsible for proton/multidrug antiport.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basic Residues R260 and K357 Affect the Conformational Dynamics of the Major Facilitator Superfamily Multidrug Transporter LmrP

Secondary-active multidrug transporters can confer resistance on cells to pharmaceuticals by mediating their extrusion away from intracellular targets via substrate/H(+)(Na(+)) antiport. While the interactions of catalytic carboxylates in these transporters with coupling ions and substrates (drugs) have been studied in some detail, the functional importance of basic residues has received much l...

متن کامل

Multidrug transporters and antibiotic resistance in Lactococcus lactis.

The Gram-positive bacterium Lactococcus lactis produces two distinct multidrug transporters, designated LmrA and LmrP, that both confer resistance to a wide variety of cationic lipophilic cytotoxic compounds as well as to many clinically relevant antibiotics. While LmrP is a proton/drug antiporter that belongs to the major facilitator superfamily of secondary transporters, LmrA is an ATP-depend...

متن کامل

Facilitated drug influx by an energy-uncoupled secondary multidrug transporter.

The majority of bacterial multidrug resistance transporters belong to the class of secondary transporters. LmrP is a proton/drug antiporter of Lactococcus lactis that extrudes positively charged lipophilic substrates from the inner leaflet of the membrane to the external medium. This study shows that LmrP is a true secondary transporter. In the absence of a proton motive force, LmrP facilitates...

متن کامل

Interactions between phosphatidylethanolamine headgroup and LmrP, a multidrug transporter: a conserved mechanism for proton gradient sensing?

In a number of cases, the function of membrane proteins appears to require the presence of specific lipid species in the bilayer. We have shown that the secondary multidrug transporter LmrP requires the presence of phosphatidylethanolamine (PE), as its replacement by phosphatidylcholine (PC) inhibits transport activity and directly affects its structure, although the underlying mechanism was un...

متن کامل

Hoechst 33342 Is a Hidden “Janus” amongst Substrates for the Multidrug Efflux Pump LmrP

Multidrug transporters mediate the active extrusion of antibiotics and toxic ions from the cell. This reaction is thought to be based on a switch of the transporter between two conformational states, one in which the interior substrate binding cavity is available for substrate binding at the inside of the cell, and another in which the cavity is exposed to the outside of the cell to enable subs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016