Application of High-Throughput Next-Generation Sequencing for HLA Typing on Buccal Extracted DNA: Results from over 10,000 Donor Recruitment Samples
نویسندگان
چکیده
BACKGROUND Unambiguous HLA typing is important in hematopoietic stem cell transplantation (HSCT), HLA disease association studies, and solid organ transplantation. However, current molecular typing methods only interrogate the antigen recognition site (ARS) of HLA genes, resulting in many cis-trans ambiguities that require additional typing methods to resolve. Here we report high-resolution HLA typing of 10,063 National Marrow Donor Program (NMDP) registry donors using long-range PCR by next generation sequencing (NGS) approach on buccal swab DNA. METHODS Multiplex long-range PCR primers amplified the full-length of HLA class I genes (A, B, C) from promotor to 3' UTR. Class II genes (DRB1, DQB1) were amplified from exon 2 through part of exon 4. PCR amplicons were pooled and sheared using Covaris fragmentation. Library preparation was performed using the Illumina TruSeq Nano kit on the Beckman FX automated platform. Each sample was tagged with a unique barcode, followed by 2×250 bp paired-end sequencing on the Illumina MiSeq. HLA typing was assigned using Omixon Twin software that combines two independent computational algorithms to ensure high confidence in allele calling. Consensus sequence and typing results were reported in Histoimmunogenetics Markup Language (HML) format. All homozygous alleles were confirmed by Luminex SSO typing and exon novelties were confirmed by Sanger sequencing. RESULTS Using this automated workflow, over 10,063 NMDP registry donors were successfully typed under high-resolution by NGS. Despite known challenges of nucleic acid degradation and low DNA concentration commonly associated with buccal-based specimens, 97.8% of samples were successfully amplified using long-range PCR. Among these, 98.2% were successfully reported by NGS, with an accuracy rate of 99.84% in an independent blind Quality Control audit performed by the NDMP. In this study, NGS-HLA typing identified 23 null alleles (0.023%), 92 rare alleles (0.091%) and 42 exon novelties (0.042%). CONCLUSION Long-range, unambiguous HLA genotyping is achievable on clinical buccal swab-extracted DNA. Importantly, full-length gene sequencing and the ability to curate full sequence data will permit future interrogation of the impact of introns, expanded exons, and other gene regulatory sequences on clinical outcomes in transplantation.
منابع مشابه
Charting improvements in US registry HLA typing ambiguity using a typing resolution score.
Unrelated stem cell registries have been collecting HLA typing of volunteer bone marrow donors for over 25years. Donor selection for hematopoietic stem cell transplantation is based primarily on matching the alleles of donors and patients at five polymorphic HLA loci. As HLA typing technologies have continually advanced since the beginnings of stem cell transplantation, registries have accrued ...
متن کاملHLA typing using DNA from oral samples collected with ORAcollect®•DNA
Traditionally, marrow donor registries and transplant centers collect DNA samples from potential donors through either a blood sample or a buccal swab sample. Both of these sample types present some challenges as blood collections are invasive for the donor and swabs present time and sample quality issues. These challenges can be eliminated by using ORAcollect®•DNA to collect a DNA sample from ...
متن کاملStrategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملHigh-resolution, high-throughput HLA genotyping by next-generation sequencing.
The human leukocyte antigen (HLA) class I and class II loci are the most polymorphic genes in the human genome. Hematopoietic stem cell transplantation requires allele-level HLA typing at multiple loci to select the best matched unrelated donors for recipient patients. In current methods for HLA typing, both alleles of a heterozygote are amplified and typed or sequenced simultaneously, often ma...
متن کاملHLA Typing for the Next Generation
Allele-level resolution data at primary HLA typing is the ideal for most histocompatibility testing laboratories. Many high-throughput molecular HLA typing approaches are unable to determine the phase of observed DNA sequence polymorphisms, leading to ambiguous results. The use of higher resolution methods is often restricted due to cost and time limitations. Here we report on the feasibility o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016