Spectral Discretization of the Vorticity, Velocity, and Pressure Formulation of the Stokes Problem

نویسندگان

  • Christine Bernardi
  • Nejmeddine Chorfi
چکیده

We consider the Stokes problem in a square or a cube provided with non standard boundary conditions which involve the normal component of the velocity and the tangential components of the vorticity. We write a variational formulation of this problem with three independent unknowns: the vorticity, the velocity and the pressure. Next we propose a discretization by spectral methods which relies on this formulation and, since it leads to an inf-sup condition on the pressure in a natural way, we prove optimal error estimates for the three unknowns. We present numerical experiments which are in perfect coherence with the analysis. Résumé: Nous considérons les équations de Stokes dans un carré ou dans un cube, munies de conditions aux limites non usuelles portant sur la composante normale de la vitesse et la ou les composantes tangentielles du tourbillon. Nous écrivons une formulation variationnelle de ce problème qui comporte trois inconnues indépendantes: le tourbillon, la vitesse et la pression. Nous proposons une discrétisation par méthodes spectrales construite à partir de cette formulation et, comme elle mène de façon naturelle à une condition infsup sur la pression, nous établissons des majorations optimales de l’erreur pour les trois inconnues. Nous présentons des expériences numériques qui sont parfaitement cohérentes avec l’analyse. 1 Laboratoire Jacques-Louis Lions, C.N.R.S. & Université Pierre et Marie Curie, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France. e-mail address: [email protected] 2 Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 1060 Tunis, Tunisie. e-mail address: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral element discretization of the vorticity, velocity and pressure formulation of the Stokes problem

We consider the Stokes problem provided with non standard boundary conditions which involve the normal component of the velocity and the tangential components of the vorticity. We write a variational formulation of this problem with three independent unknowns: the vorticity, the velocity and the pressure. Next we propose a discretization by spectral element methods which relies on this formulat...

متن کامل

A Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows

Abstract   The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...

متن کامل

Spectral discretization of the vorticity, velocity and pressure formulation of the Navier-Stokes equations

We consider the Navier–Stokes equations in a twoou three-dimensional domain provided with non standard boundary conditions which involve the normal component of the velocity and the tangential components of the vorticity. We write a variational formulation of this problem with three independent unknowns: the vorticity, the velocity and the pressure, and prove the existence of a solution for thi...

متن کامل

A comparative study between two numerical solutions of the Navier-Stokes equations

The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...

متن کامل

A discrete duality finite volume discretization of the vorticity-velocity-pressure formulation of the 2D Stokes problem on almost arbitrary two-dimensional grids

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2006