CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone.
نویسندگان
چکیده
CspA, the major cold-shock protein of Escherichia coli, is dramatically induced during the cold-shock response. The amino acid sequence of CspA shows 43% identity to the "cold-shock domain" of the eukaryotic Y-box protein family, which interacts with RNA and DNA to regulate their functions. Here, we demonstrate that CspA binds to RNA as a chaperone. First, CspA cooperatively binds to heat-denatured single-stranded RNA if it is larger than 74 bases, causing a supershift in gel electrophoresis. A minimal concentration of CspA at 2.7 x 10(-5) M is absolutely required for this cooperative binding, which is sufficiently lower than the estimated cellular concentration of CspA (10(-4) M) in cold-shocked cells. No specific RNA sequences for CspA binding were identified, indicating that it has a broad sequence specificity for its binding. When the 142-base 5'-untranslated region of the cspA mRNA was used as a substrate for ribonucleases A and T1, the addition of CspA significantly stimulated RNA hydrolysis by preventing the formation of RNase-resistant bands due to stable secondary structures in the 5'-untranslated region. These results indicate that binding of CspA to RNA destabilizes RNA secondary structures to make them susceptible to ribonucleases. We propose that CspA functions as an RNA chaperone to prevent the formation of secondary structures in RNA molecules at low temperature. Such a function may be crucial for efficient translation of mRNAs at low temperatures and may also have an effect on transcription.
منابع مشابه
RNA binding and chaperone activity of the E. coli cold-shock protein CspA
Ensuring the correct folding of RNA molecules in the cell is of major importance for a large variety of biological functions. Therefore, chaperone proteins that assist RNA in adopting their functionally active states are abundant in all living organisms. An important feature of RNA chaperone proteins is that they do not require an external energy source to perform their activity, and that they ...
متن کاملEscherichia coli CspA-family RNA chaperones are transcription antiterminators.
CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone, which is thought to facilitate translation at low temperature by destabilizing mRNA structures. Here we demonstrate that CspA, as well as homologous RNA chaperones CspE and CspC, are transcription antiterminators. In vitro, the addition of physiological concentrations of recombinant CspA, CspE, or CspC decreased transc...
متن کاملCspA, the major cold shock protein of Escherichia coli, negatively regulates its own gene expression.
When the gene for CspA, the major cold shock protein of Escherichia coli, was disrupted by a novel positive/negative selection method, the deltacspA cells did not show any discernible growth defect at either 37 or 15 degrees C. By two-dimensional gel electrophoresis, total protein synthesis was analyzed after temperature downshift in the deltacspA strain. The production of the CspA homologs Csp...
متن کاملTranscription antitermination by translation initiation factor IF1.
Bacterial translation initiation factor IF1 is an S1 domain protein that belongs to the oligomer binding (OB) fold proteins. Cold shock domain (CSD)-containing proteins such as CspA (the major cold shock protein of Escherichia coli) and its homologues also belong to the OB fold protein family. The striking structural similarity between IF1 and CspA homologues suggests a functional overlap betwe...
متن کاملMassive presence of the Escherichia coli 'major cold-shock protein' CspA under non-stress conditions.
The most characteristic event of cold-shock activation in Escherichia coli is believed to be the de novo synthesis of CspA. We demonstrate, however, that the cellular concentration of this protein is > or = 50 microM during early exponential growth at 37 degrees C; therefore, its designation as a major cold-shock protein is a misnomer. The cspA mRNA level decreases rapidly with increasing cell ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 272 1 شماره
صفحات -
تاریخ انتشار 1997