Assessment of photosystem II thermoluminescence as a tool to investigate the effects of dehydration and rehydration on the cyclic/chlororespiratory electron pathways in wheat and barley leaves.

نویسندگان

  • Kathrin Bürling
  • Jean-Marc Ducruet
  • Gabriel Cornic
  • Mauricio Hunsche
  • Zoran G Cerovic
چکیده

Thermoluminescence emission from wheat leaves was recorded under various controlled drought stress conditions: (i) fast dehydration (few hours) of excised leaves in the dark (ii) slow dehydration (several days) obtained by withholding watering of plants under a day/night cycle (iii) overnight rehydration of the slowly dehydrated plants at a stage of severe dessication. In fast dehydrated leaves, the AG band intensity was unchanged but its position was shifted to lower temperatures, indicating an activation of cyclic and chlororespiratory pathways in darkness, without any increase of their overall electron transfer capacity. By contrast, after a slow dehydration the AG intensity was strongly increased whereas its position was almost unchanged, indicating respectively that the capacity of cyclic pathways was enhanced but that they remained inactivated in darkness. Under more severe dehydration, the AG band almost disappeared. Rewatering caused its rapid bounce significantly above the control level. No significant differences in AG emission could be found between the two drought-sensitive and drought-tolerant wheat cultivars. The afterglow thermoluminescence emission in leaves provides an additional tool to follow the increased capacity and activation of cyclic electron flow around PSI in leaves during mild, severe dehydration and after rehydration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Study on the Effect of Water Stress and Rootstock on Photosynthetic Function in Pistachio (Pistacia vera L.) Trees

The aim of this study is to evaluate the  effects of water deficit stress on chlorophyll fluorescence (CF) characteristics of photosystem II (PSII) and pigment contents in two rootstock seedlings (Pistacia atlantica L. and P. khinjuk L.). Three levels of soil water potential (Ψs) was used, including WWD (-0.05 MPa), MWD (-0.7 MPa) and SWD (-1.5 MPa). It was found that water stress increased the...

متن کامل

Chlorophyll thermoluminescence of leaf discs: simple instruments and progress in signal interpretation open the way to new ecophysiological indicators.

Luminescence from photosynthetic material observed in darkness following illumination is a delayed fluorescence produced by a recombination of charge pairs stored in photosystem II, i.e. the back-reaction of photosynthetic charge separation. Thermoluminescence (TL) is a technique consisting of a rapid cooling followed by the progressive warming of a preilluminated sample to reveal the different...

متن کامل

Effects of short-time alkaline pretreatment on growth and photosynthesis efficiency of endemic cyanobacterium Fischerella sp. FS 18.

Alkaline pH is one of the most important problems of our aquatic habitat. We used Stigonematalean native cyanobacterium Fischerella sp. FS 18 as our model strain, andstudied it under different alkaline pHs (7, 9 and rarely 11) under two different – short and long- time treatments (24 and 96 hours after inoculation). Spectroscopic results showed that both alkalinity and time affected growth rate...

متن کامل

Thermoluminescence as a complementary technique for the toxicological evaluation of chemicals in photosynthetic organisms.

Thermoluminescence is a simple technique very useful for studying electron transfer reactions on photosystem II (standard thermoluminescence) or the level of lipid peroxidation in membranes (high temperature thermoluminescence) in photosynthetic organisms. Both techniques were used to investigate the effects produced on Chlorella vulgaris cells by six compounds: the chemical intermediates bromo...

متن کامل

Experimental evidence for ascorbate-dependent electron transport in leaves with inactive oxygen-evolving complexes.

Previously, we showed that in barley (Hordeum vulgare) leaves with heat-inactivated oxygen-evolving complexes, photosystem II (PSII) has access to a large pool of alternative electron donors. Based on in vitro data, we proposed that this donor was ascorbate, yet this hypothesis has not been substantiated in vivo. In this paper, with the aid of chlorophyll a fluorescence induced by short (5-ms) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant science : an international journal of experimental plant biology

دوره 223  شماره 

صفحات  -

تاریخ انتشار 2014