Consequences of a Factorization Theorem for Generalized Exponential Polynomials with Infinitely Many Integer Zeros

نویسندگان

  • Ouamporn Phuksuwan
  • Vichian Laohakosol
چکیده

A factorization theorem is proved for a class of generalized exponential polynomials having all but finitely many of integer zeros belong to a finite union of arithmetic progressions. This theorem extends a similar result for ordinary exponential polynomials due to H. N. Shapiro in 1959. The factorization makes apparent those factors corresponding to all zeros in such a union.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting zeros of generalized polynomials: Descartes’ rule of signs and Laguerre’s extensions

A slightly different question is how many positive zeros a polynomial has. Here the basic result is known as “Descartes’ rule of signs”. It says that the number of positive zeros is no more than the number of sign changes in the sequence of coefficients. Descartes included it in his treatise La Géométrie, which appeared in 1637. It can be proved by a method based on factorization, but, again, j...

متن کامل

Zeros of differential polynomials in real meromorphic functions

We investigate when differential polynomials in real transcendental meromorphic functions have non-real zeros. For example, we show that if g is a real transcendental meromorphic function, c ∈ R \ {0} and n ≥ 3 is an integer, then g′gn − c has infinitely many non-real zeros. If g has only finitely many poles, then this holds for n ≥ 2. Related results for rational functions g are also considered.

متن کامل

Deterministic Polynomial Factoring and Association Schemes

The problem of finding a nontrivial factor of a polynomial f(x) over a finite field Fq has many known efficient, but randomized, algorithms. The deterministic complexity of this problem is a famous open question even assuming the generalized Riemann hypothesis (GRH). In this work we improve the state of the art by focusing on prime degree polynomials; let n be the degree. If (n − 1) has a ‘larg...

متن کامل

A VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS

The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...

متن کامل

Identities Involving Zeros of Ramanujan and Shanks Cubic Polynomials

In this paper we highlight the connection between Ramanujan cubic polynomials (RCPs) and a class of polynomials, the Shanks cubic polynomials (SCPs), which generate cyclic cubic fields. In this way we provide a new characterization for RCPs and we express the zeros of any RCP in explicit form, using trigonometric functions. Moreover, we observe that a cyclic transform of period three permutes t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013