Recognising Multidimensional Euclidean Preferences
نویسنده
چکیده
Euclidean preferences are a widely studied preference model, in which decision makers and alternatives are embedded in d-dimensional Euclidean space. Decision makers prefer those alternatives closer to them. This model, also known as multidimensional unfolding, has applications in economics, psychometrics, marketing, and many other fields. We study the problem of deciding whether a given preference profile is d-Euclidean. For the one-dimensional case, polynomial-time algorithms are known. We show that, in contrast, for every other fixed dimension d > 1, the recognition problem is equivalent to the existential theory of the reals (ETR), and so in particular NP-hard. We further show that some Euclidean preference profiles require exponentially many bits in order to specify any Euclidean embedding, and prove that the domain of d-Euclidean preferences does not admit a finite forbidden minor characterisation for any d > 1. We also study dichotomous preferences and the behaviour of other metrics, and survey a variety of related work.
منابع مشابه
How Are Mate Preferences Linked with Actual Mate Selection? Tests of Mate Preference Integration Algorithms Using Computer Simulations and Actual Mating Couples
Prior mate preference research has focused on the content of mate preferences. Yet in real life, people must select mates among potentials who vary along myriad dimensions. How do people incorporate information on many different mate preferences in order to choose which partner to pursue? Here, in Study 1, we compare seven candidate algorithms for integrating multiple mate preferences in a comp...
متن کاملEvaluating Visual Preferences of Architects and People Toward Housing Facades, Using Multidimensional Scaling Analysis (MDS)
One of the most important issues that have absorbed the public opinion and expert community during the recent years, is the qualitative and quantitative aspects of the housing. There are several challenges related to this topic that includes the contexts of the construction, manufacturing, planning to social aspects, cultural, physical and architectural design. The thing that has a significant ...
متن کاملDimensionality Reduction via Euclidean Distance Embeddings
This report provides a mathematically thorough review and investigation of Metric Multidimensional scaling (MDS) through the analysis of Euclidean distances in input and output spaces. By combining a geometric approach with modern linear algebra and multivariate analysis, Metric MDS is viewed as a Euclidean distance embedding transformation that converts between coordinate and coordinate-free r...
متن کاملPattern Recognition Approach in Multidimensional Databases: Application to the Global Terrorism Database
This paper presents a pattern recognition approach in multidimensional databases. The approach is based on a clustering method using the distance measurement between a reference profile and the database observations. Two distance measurements will be proposed: an adaptation of the Khi formula to the multidimensional context, extracted from the Multiple Correspondence Analysis (MCA), and the Euc...
متن کاملOn the Schoenberg Transformations in Data Analysis: Theory and Illustrations
The class of Schoenberg transformations, embedding Euclidean distances into higher dimensional Euclidean spaces, is presented, and derived from theorems on positive definite and conditionally negative definite matrices. Original results on the arc lengths, angles and curvature of the transformations are proposed, and visualized on artificial data sets by classical multidimensional scaling. A si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017