Symmetry Detection and Exploitation for Function Approximation in Deep RL
نویسندگان
چکیده
With recent advances in the use of deep networks for complex reinforcement learning (RL) tasks which require large amounts of training data, ensuring sample efficiency has become an important problem. In this work we introduce a novel method to detect environment symmetries using reward trails observed during episodic experience. Next we provide a framework to incorporate the discovered symmetries for functional approximation to improve sample efficiency. Finally, we show that the use of potential based reward shaping is especially effective for our symmetry exploitation mechanism. Experiments on classical problems show that our method improves the learning performance significantly by utilizing symmetry information.
منابع مشابه
Symmetry Learning for Function Approximation in Reinforcement Learning
In this paper we explore methods to exploit symmetries for ensuring sample efficiency in reinforcement learning (RL), this problem deserves ever increasing attention with the recent advances in the use of deep networks for complex RL tasks which require large amount of training data. We introduce a novel method to detect symmetries using reward trails observed during episodic experience and pro...
متن کاملHigh impedance fault detection: Discrete wavelet transform and fuzzy function approximation
This paper presets a method including a combination of the wavelet transform and fuzzy function approximation (FFA) for high impedance fault (HIF) detection in distribution electricity network. Discrete wavelet transform (DWT) has been used in this paper as a tool for signal analysis. With studying different types of mother signals, detail types and feeder signal, the best case is selected. The...
متن کاملEfficient Value-Function Approximation via Online Linear Regression
One of the key problems in reinforcement learning (RL) is balancing exploration and exploitation. Another is learning and acting in large or even continuous Markov decision processes (MDPs), where compact function approximation has to be used. In this paper, we provide a provably efficient, model-free RL algorithm for finite-horizon problems with linear value-function approximation that address...
متن کاملLinear Feature Encoding for Reinforcement Learning
Feature construction is of vital importance in reinforcement learning, as the quality of a value function or policy is largely determined by the corresponding features. The recent successes of deep reinforcement learning (RL) only increase the importance of understanding feature construction. Typical deep RL approaches use a linear output layer, which means that deep RL can be interpreted as a ...
متن کاملManaging Uncertainty within Value Function Approximation in Reinforcement Learning
The dilemma between exploration and exploitation is an important topic in reinforcement learning (RL). Most successful approaches in addressing this problem tend to use some uncertainty information about values estimated during learning. On another hand, scalability is known as being a lack of RL algorithms and value function approximation has become a major topic of research. Both problems ari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017