Neurodegenerative Diseases: Exercising Toward Neurogenesis and Neuroregeneration

نویسندگان

  • Eng-Tat Ang
  • Yee-Kit Tai
  • Shun-Qiang Lo
  • Raymond Seet
  • Tuck-Wah Soong
چکیده

Currently, there is still no effective therapy for neurodegenerative diseases (NDD) such as Alzheimer's disease (AD) and Parkinson's disease (PD) despite intensive research and on-going clinical trials. Collectively, these diseases account for the bulk of health care burden associated with age-related neurodegenerative disorders. There is therefore an urgent need to further research into the molecular pathogenesis, histological differentiation, and clinical management of NDD. Importantly, there is also an urgency to understand the similarities and differences between these two diseases so as to identify the common or different upstream and downstream signaling pathways. In this review, the role iron play in NDD will be highlighted, as iron is key to a common underlying pathway in the production of oxidative stress. There is increasing evidence to suggest that oxidative stress predisposed cells to undergo damage to DNA, protein and lipid, and as such a common factor involved in the pathogenesis of AD and PD. The challenge then is to minimize elevated and uncontrolled oxidative stress levels while not affecting basal iron metabolism, as iron plays vital roles in sustaining cellular function. However, overload of iron results in increased oxidative stress due to the Fenton reaction. We discuss evidence to suggest that sustained exercise and diet restriction may be ways to slow the rate of neurodegeneration, by perhaps promoting neurogenesis or antioxidant-related pathways. It is also our intention to cover NDD in a broad sense, in the context of basic and clinical sciences to cater for both clinician's and the scientist's needs, and to highlight current research investigating exercise as a therapeutic or preventive measure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroregeneration in neurodegenerative disorders

BACKGROUND Neuroregeneration is a relatively recent concept that includes neurogenesis, neuroplasticity, and neurorestoration--implantation of viable cells as a therapeutical approach. DISCUSSION Neurogenesis and neuroplasticity are impaired in brains of patients suffering from Alzheimer's Disease or Parkinson's Disease and correlate with low endogenous protection, as a result of a diminished...

متن کامل

Multimodality Monitoring, Inflammation, and Neuroregeneration in Subarachnoid Hemorrhage

BACKGROUND Stroke, including subarachnoid hemorrhage (SAH), is one of the leading causes of morbidity and mortality worldwide. The mortality rate of poor-grade SAH ranges from 34% to 52%. In an attempt to improve SAH outcomes, clinical research on multimodality monitoring has been performed, as has basic science research on inflammation and neuroregeneration (which can occur due to injury-induc...

متن کامل

TRPV1 may increase the effectiveness of estrogen therapy on neuroprotection and neuroregeneration

Aging induces physical deterioration, loss of the blood brain barrier, neuronal loss-induced mental and neurodegenerative diseases. Hypotalamus-hypophysis-gonad axis aging precedes symptoms of menopause or andropause and is a major determinant of sensory and cognitive integrated function. Sexual steroids support important functions, exert pleiotropic effects in different sensory cells, promote ...

متن کامل

Brain-derived neurotropic factor and GABAergic transmission in neurodegeneration and neuroregeneration

Neurotoxicity induced by stress, radiation, chemicals, or metabolic diseases, is commonly associated with excitotoxicity, oxidative stress, and neuroinflammation. The pathological process of neurotoxicity induces neuronal death, interrupts synaptic plasticity in the brain, and is similar to that of diverse neurodegenerative diseases. Animal models of neurotoxicity have revealed that clinical sy...

متن کامل

Human Dental Pulp Cells Differentiate toward Neuronal Cells and Promote Neuroregeneration in Adult Organotypic Hippocampal Slices In Vitro

The adult mammalian central nerve system has fundamental difficulties regarding effective neuroregeneration. The aim of this study is to investigate whether human dental pulp cells (DPCs) can promote neuroregeneration by (i) being differentiated toward neuronal cells and/or (ii) stimulating local neurogenesis in the adult hippocampus. Using immunostaining, we demonstrated that adult human denta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010