Experimental investigation of the effect of tip shape in gecko-inspired adhesive devices under asymmetric detachment
نویسندگان
چکیده
Background It is usually challenging to achieve surfaces that are highly adhesive, yet can be detached easily. Geckos’ foot hairs, however, can be easily detached from a surface even though they adhere to it strongly enough to hold the animal’s body against gravity. Inspired by Nature, a combination of strong adhesion and easy detachment in adhesion system can be achieved and the possibility of reversible adhesion will be opened up. Geckos’ ability to climb vertical walls and hang upside-down on ceilings have attracted the attention of numerous scientists who, through careful observations, have linked these remarkable properties to microscopic hairs present on the surface of gecko’s foot [1–4]. These findings were corroborated by measurements of the adhesive force of a single gecko foot hair [5]. Insects, such as beetles, also use foot hairs to improve their grip on surfaces [6, 7]. Several devices mimicking these foot hairs were fabricated, which showed improved adhesive properties [8–14]. In particular, a mushroom-like structure exhibited strong adhesive behavior by equalizing the stress distribution at a contact tip [15–19]. In contrast, an asymmetric stress distribution lowers the detachment force. When a tangential force is applied, a moment is generated in the structure and the stress at the contact area is asymmetrically distributed. The stress at the contact edge increases with the applied moment until the stress is reached at which point the detachment occurs [20]. Hence, the detachment force decreases when the moment increases, and the control of the moment is an important Abstract Gecko’s foot hairs exhibit significant frictional anisotropy that enables a strong foot grip in a specific direction and an easy detachment in the opposite direction. In this study, we fabricate adhesive devices with frictional anisotropy mimicking gecko’s foot hair based on oblique micro-beam arrays. The devices adhesion force is strongly anisotropic along the beam tilting direction and depends on the stress distribution at the contact area which, in turn, is affected by the geometry of the beam tips. This dependence is investigated by fabricating and testing micro beam arrays with various tip shapes.
منابع مشابه
Simulation of synthetic gecko arrays shearing on rough surfaces.
To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically deriv...
متن کاملSpatial model of the gecko foot hair: functional significance of highly specialized non-uniform geometry.
One of the important problems appearing in experimental realizations of artificial adhesives inspired by gecko foot hair is so-called clusterization. If an artificially produced structure is flexible enough to allow efficient contact with natural rough surfaces, after a few attachment-detachment cycles, the fibres of the structure tend to adhere one to another and form clusters. Normally, such ...
متن کاملInstantly switchable adhesion of bridged fibrillar adhesive via gecko-inspired detachment mechanism and its application to a transportation system.
Inspired by the exceptional climbing ability of gecko lizards, artificial fibrillar adhesives have been extensively studied over the last decade both experimentally and theoretically. Therefore, a new leap towards practical uses beyond the academic horizon is timely and highly anticipated. To this end, we present a fibrillar adhesive in the form of bridged micropillars and its application to a ...
متن کاملA microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime.
Gecko adhesion has become a paradigmatic example of bio-inspired engineering, yet among the many gecko-like synthetic adhesives (GSAs), truly gecko-like performance remains elusive. Many GSAs have previously demonstrated one or two features of the gecko adhesive. We present a new wedge-shaped GSA that exhibits several gecko-like properties simultaneously: directional features; zero force at det...
متن کاملFrictional adhesion: A new angle on gecko attachment.
Directional arrays of branched microscopic setae constitute a dry adhesive on the toes of pad-bearing geckos, nature's supreme climbers. Geckos are easily and rapidly able to detach their toes as they climb. There are two known mechanisms of detachment: (1) on the microscale, the seta detaches when the shaft reaches a critical angle with the substrate, and (2) on the macroscale, geckos hyperext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017