The discrete adjoint method for parameter identification in multibody system dynamics
نویسندگان
چکیده
The adjoint method is an elegant approach for the computation of the gradient of a cost function to identify a set of parameters. An additional set of differential equations has to be solved to compute the adjoint variables, which are further used for the gradient computation. However, the accuracy of the numerical solution of the adjoint differential equation has a great impact on the gradient. Hence, an alternative approach is the discrete adjoint method, where the adjoint differential equations are replaced by algebraic equations. Therefore, a finite difference scheme is constructed for the adjoint system directly from the numerical time integration method. The method provides the exact gradient of the discretized cost function subjected to the discretized equations of motion.
منابع مشابه
Enhancement of the Adjoint Method by Error Control of Accelerations for Parameter Identification in Multibody Dynamics
The present paper shows the embedding of the adjoint method in multibody dynamics and its broad applicability for examples for both, parameter identification and optimal control. Especially, in case of parameter identifications in engineering multibody applications, a theoretical enhancement of the proposed adjoint method by an error control of accelerations is inevitable in order to meet the c...
متن کاملOptimal input design for multibody systems by using an extended adjoint approach
We present a method for optimizing inputs of multibody systems for a subsequently performed parameter identification. Herein, optimality with respect to identifiability is attained by maximizing the information content in measurements described by the Fisher information matrix. For solving the resulting optimization problem, the adjoint system of the sensitivity differential equation system is ...
متن کاملEigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays
Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...
متن کاملOn the adjoint formulation of design sensitivity analysis of multibody dynamics cs
Numerical methods for design sensitivity analysis of multibody dynamics are presented. An analysis of the index-3 adjoint differential-algebraic equations is conducted and stability of the integration of the adjoint differential-algebraic equations in the backward direction is proven. Stabilized index-1 formulations are presented and convergence of backward differentiation formulas is shown for...
متن کاملOptimal Control of Light Propagation Governed by Eikonal Equation within Inhomogeneous Media Using Computational Adjoint Approach
A mathematical model is presented in the present study to control the light propagation in an inhomogeneous media. The method is based on the identification of the optimal materials distribution in the media such that the trajectories of light rays follow the desired path. The problem is formulated as a distributed parameter identification problem and it is solved by a numerical met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 42 شماره
صفحات -
تاریخ انتشار 2018