Improved Weil and Tate Pairings for Elliptic and Hyperelliptic Curves
نویسندگان
چکیده
We present algorithms for computing the squared Weil and Tate pairings on elliptic curves and the squared Tate pairing on hyperelliptic curves. The squared pairings introduced in this paper have the advantage that our algorithms for evaluating them are deterministic and do not depend on a random choice of points. Our algorithm to evaluate the squared Weil pairing is about 20% more efficient than the standard Weil pairing. Our algorithm for the squared Tate pairing on elliptic curves matches the efficiency of the algorithm given by Barreto, Lynn, and Scott in the case of arbitrary base points where their denominator cancellation technique does not apply. Our algorithm for the squared Tate pairing for hyperelliptic curves is the first detailed implementation of the pairing for general hyperelliptic curves of genus 2, and saves an estimated 30% over the standard algorithm.
منابع مشابه
ID-Based Blind Signature and Ring Signature from Pairings
Recently the bilinear pairing such as Weil pairing or Tate pairing on elliptic curves and hyperelliptic curves have been found various applications in cryptography. Several identity-based (simply ID-based) cryptosystems using bilinear pairings of elliptic curves or hyperelliptic curves were presented. Blind signature and ring signature are very useful to provide the user’s anonymity and the sig...
متن کاملComparing Implementation Efficiency of Ordinary and Squared Pairings
In this paper, we will implement a standard probabilistic method of computing bilinear pairings. We will compare its performance to a deterministic algorithm introduced in [5] to compute the squared Tate/Weil pairings which are claimed to be 20 percent faster than the standard method. All pairings will be evaluated over pairing-friendly ordinary elliptic curves of embedding degrees 8 and 10 and...
متن کاملPairing-Based Cryptographic Protocols : A Survey
The bilinear pairing such as Weil pairing or Tate pairing on elliptic and hyperelliptic curves have recently been found applications in design of cryptographic protocols. In this survey, we have tried to cover different cryptographic protocols based on bilinear pairings which possess, to the best of our knowledge, proper security proofs in the existing security models.
متن کاملTate Pairing Implementation for Hyperelliptic Curves y2 = xp-x + d
The Weil and Tate pairings have been used recently to build new schemes in cryptography. It is known that the Weil pairing takes longer than twice the running time of the Tate pairing. Hence it is necessary to develop more efficient implementations of the Tate pairing for the practical application of pairing based cryptosystems. In 2002, Barreto et al. and Galbraith et al. provided new algorith...
متن کاملEfficient Pairing Computation on Genus 2 Curves in Projective Coordinates
In recent years there has been much interest in the development and the fast computation of bilinear pairings due to their practical and myriad applications in cryptography. Well known efficient examples are the Weil and Tate pairings and their variants such as the Eta and Ate pairings on the Jacobians of (hyper-)elliptic curves. In this paper, we consider the use of projective coordinates for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2003 شماره
صفحات -
تاریخ انتشار 2003