Combining Translation Memories and Syntax-Based SMT: Experiments with Real Industrial Data
نویسندگان
چکیده
One major drawback of using Translation Memories (TMs) in phrase-based Machine Translation (MT) is that only continuous phrases are considered. In contrast, syntax-based MT allows phrasal discontinuity by learning translation rules containing non-terminals. In this paper, we combine a TM with syntax-based MT via sparse features. These features are extracted during decoding based on translation rules and their corresponding patterns in the TM. We have tested this approach by carrying out experiments on real English–Spanish industrial data. Our results show that these TM features significantly improve syntax-based MT. Our final system yields improvements of up to +3.1 BLEU, +1.6 METEOR, and -2.6 TER when compared with a stateof-the-art phrase-based MT system.
منابع مشابه
A Hybrid Machine Translation System Based on a Monotone Decoder
In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...
متن کاملChained System: A Linear Combination of Different Types of Statistical Machine Translation Systems
The paper explores a way to learn post-editing fixes of raw MT outputs automatically by combining two different types of statistical machine translation (SMT) systems in a linear fashion. Our proposed system (which we call a chained system) consists of two SMT systems: (i) a syntax-based SMT system and (ii) a phrase-based SMT system (Koehn, 2004). We first translate source sentences of the bite...
متن کاملPractical Approach to Syntax-based Statistical Machine Translation
This paper presents a practical approach to statistical machine translation (SMT) based on syntactic transfer. Conventionally, phrase-based SMT generates an output sentence by combining phrase (multiword sequence) translation and phrase reordering without syntax. On the other hand, SMT based on tree-to-tree mapping, which involves syntactic information, is theoretical, so its features remain un...
متن کاملExtending CCG-based Syntactic Constraints in Hierarchical Phrase-Based SMT
In this paper, we describe two approaches to extending syntactic constraints in the Hierarchical Phrase-Based (HPB) Statistical Machine Translation (SMT) model using Combinatory Categorial Grammar (CCG). These extensions target the limitations of previous syntax-augmented HPB SMT systems which limit the coverage of the syntactic constraints applied. We present experiments on Arabic–English and ...
متن کاملDeriving Benefit from a Generalized Syntax-based Reordering
In this study we describe a syntax-based word reordering technique for n-gram-based statistical machine translation (SMT). The proposed distortion model operates with generalized unlexicalized rules and aims to order source language words so that translation is close to monotonic, simplifying the translation process. In the final step, we apply a translation units blending strategy, combining b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016