LS-CMA-ES: A Second-Order Algorithm for Covariance Matrix Adaptation
نویسندگان
چکیده
Evolution Strategies, Evolutionary Algorithms based on Gaussian mutation and deterministic selection, are today considered the best choice as far as parameter optimization is concerned. However, there are multiple ways to tune the covariance matrix of the Gaussian mutation. After reviewing the state of the art in covariance matrix adaptation, a new approach is proposed, in which the covariance matrix adaptation method is based on a quadratic approximation of the target function obtained by some Least-Square minimization. A dynamic criterion is designed to detect situations where the approximation is not accurate enough, and original Covariance Matrix Adaptation (CMA) should rather be directly used. The resulting algorithm is experimentally validated on benchmark functions, performing much better than CMA-ES on a large class of problems.
منابع مشابه
Task Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing
The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...
متن کاملTHE CMA EVOLUTION STRATEGY BASED SIZE OPTIMIZATION OF TRUSS STRUCTURES
Evolution Strategies (ES) are a class of Evolutionary Algorithms based on Gaussian mutation and deterministic selection. Gaussian mutation captures pair-wise dependencies between the variables through a covariance matrix. Covariance Matrix Adaptation (CMA) is a method to update this covariance matrix. In this paper, the CMA-ES, which has found many applications in solving continuous optimizatio...
متن کاملLimited-Memory Matrix Adaptation for Large Scale Black-box Optimization
The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a popular method to deal with nonconvex and/or stochastic optimization problems when the gradient information is not available. Being based on the CMA-ES, the recently proposed Matrix Adaptation Evolution Strategy (MA-ES) provides a rather surprising result that the covariance matrix and all associated operations (e.g., potentially...
متن کاملA Simple Modification in CMA-ES Achieving Linear Time and Space Complexity
This report proposes a simple modification of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for high dimensional objective functions, that reduces the internal time and space complexity from quadratic to linear. The covariance matrix is constrained to be diagonal and the resulting algorithm, sep-CMA-ES, samples each coordinate independently. Because the model complexity is reduce...
متن کاملA Simple Yet Efficient Rank One Update for Covariance Matrix Adaptation
In this paper, we propose an efficient approximated rank one update for covariance matrix adaptation evolution strategy (CMA-ES). It makes use of two evolution paths as simple as that of CMA-ES, while avoiding the computational matrix decomposition. We analyze the algorithms’ properties and behaviors. We experimentally study the proposed algorithm’s performances. It generally outperforms or per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004