High Performance Adaptive Fidelity Algorithms for Multi-Modality Optic Nerve Head Image Fusion

نویسندگان

  • Hua Cao
  • Nathan E. Brener
  • Bahram Khoobehi
  • S. Sitharama Iyengar
چکیده

A high performance adaptive fidelity approach for multi-modality Optic Nerve Head (ONH) image fusion is presented. The new image fusion method, which consists of the Adaptive Fidelity Exploratory Algorithm (AFEA) and the Heuristic Optimization Algorithm (HOA), is reliable and time efficient. It has achieved an optimal fusion result by giving the visualization of fundus image with a maximum angiogram overlay. Control points are detected at the vessel bifurcations using the AFEA. Shape similarity criteria are used to match the control points that represent same salient features of different images. HOA adjusts the initial good-guess of control points at the subpixel level in order to maximize the objective function Mutual-Pixel-Count (MPC). In addition, the performance of the AFEA and HOA algorithms was compared to the Centerline Control Point Detection Algorithm, Root Mean Square Error (RMSE) minimization objective function employed by the traditional Iterative Closest Point (ICP) algorithm, Genetic Algorithm, and some other existing image fusion approaches. The evaluation results strengthen the AFEA and HOA algorithms in terms of novelty, automation, accuracy, and efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Performance Adaptive Fidelity Algorithms for Multi-Modality Image Fusion

The novel high performance adaptive fidelity algorithms for automated multi-modality images’ feature detection, registration, and fusion is presented. The new fusion method, which consists of the Adaptive Fidelity Exploratory Algorithm (AFEA) and the Heuristic Optimization Algorithm (HOA), implements automatic adaptation from frame to frame with a few tunable thresholds. The new algorithms have...

متن کامل

Multi-frame Super Resolution for Improving Vehicle Licence Plate Recognition

License plate recognition (LPR) by digital image processing, which is widely used in traffic monitor and control, is one of the most important goals in Intelligent Transportation System (ITS). In real ITS, the resolution of input images are not very high since technology challenges and cost of high resolution cameras. However, when the license plate image is taken at low resolution, the license...

متن کامل

Multi-Focus Image Fusion in DCT Domain using Variance and Energy of Laplacian and Correlation Coefficient for Visual Sensor Networks

The purpose of multi-focus image fusion is gathering the essential information and the focused parts from the input multi-focus images into a single image. These multi-focus images are captured with different depths of focus of cameras. A lot of multi-focus image fusion techniques have been introduced using considering the focus measurement in the spatial domain. However, the multi-focus image ...

متن کامل

Image Restoration with Two-Dimensional Adaptive Filter Algorithms

Two-dimensional (TD) adaptive filtering is a technique that can be applied to many image, and signal processing applications. This paper extends the one-dimensional adaptive filter algorithms to TD structures and the novel TD adaptive filters are established. Based on this extension, the TD variable step-size normalized least mean squares (TD-VSS-NLMS), the TD-VSS affine projection algorithms (...

متن کامل

Metal Artifact Reduction of Dental Fillings in Head and Neck CT Images

Introduction: The issue of metal artifact and its reduction is as old as the clinical use of computed tomography itself. When metal objects such as dental fillings, hip prostheses or surgical clips are present in the computed tomography (CT) field of view (FOV), make severe artifacts that reduce the image quality and accuracy of CT numbers. They can lead to unreliable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing Systems

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2011