Digital parallel frequency-domain spectroscopy for tissue imaging.
نویسندگان
چکیده
Near-infrared (NIR) (650 to 1000 nm) optical properties of turbid media can be quantified accurately and noninvasively using methods based on diffuse reflectance or transmittance, such as frequency-domain photon migration (FDPM). Conventional FDPM techniques based on white-light steady-state (SS) spectral measurements in conjunction with the acquisition of frequency-domain (FD) data at selected wavelengths using laser diodes are used to measure broadband NIR scattering-corrected absorption spectra of turbid media. These techniques are limited by the number of wavelength points used to obtain FD data and by the sweeping technique used to collect FD data over a relatively large range. We have developed a method that introduces several improvements in the acquisition of optical parameters, based on the digital parallel acquisition of a comb of frequencies and on the use of a white laser as a single light source for both FD and SS measurements. The source, due to the high brightness, allows a higher penetration depth with an extremely low power on the sample. The parallel acquisition decreases the time required by standard serial systems that scan through a range of modulation frequencies. Furthermore, all-digital acquisition removes analog noise, avoids the analog mixer, and does not create radiofrequency interference or emission.
منابع مشابه
Feasibility of Direct Digital Sampling for Diffuse Optical Frequency Domain Spectroscopy in Tissue.
Frequency domain optical spectroscopy in the diffusive regime is currently being investigated for biomedical applications including tumor detection, therapy monitoring, exercise metabolism, and others. Analog homodyne or heterodyne detection of sinusoidally modulated signals have been the predominant method for measuring phase and amplitude of photon density waves that have traversed through ti...
متن کاملA parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging.
Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied...
متن کاملImaging with terahertz waves.
We present what is to our knowledge the first imaging system based on optoelectronic terahertz time-domain spectroscopy. Terahertz time-domain waveforms are downconverted from the terahertz to the kilohertz frequency range, and the waveform for each pixel is frequency analyzed in real time with a digital signal processor to extract compositional information at that point. We demonstrate applica...
متن کاملVisible spatial frequency domain imaging with a digital light microprojector.
There is a need for cost effective, quantitative tissue spectroscopy and imaging systems in clinical diagnostics and pre-clinical biomedical research. A platform that utilizes a commercially available light-emitting diode (LED) based projector, cameras, and scaled Monte Carlo model for calculating tissue optical properties is presented. These components are put together to perform spatial frequ...
متن کاملMulti-Distance and Multi-Frequency Frequency-Domain Near-Infrared Spectroscopy: Characterization and Application
Near-infrared spectroscopy and imaging are non-invasive optical methods, which measure various parameters such as the absorption and scattering coefficient of tissue and the concentration of oxy and deoxyhemoglobin, water and fat. Near-infrared spectroscopy and imaging offer the possibility to non-invasively measure hemodynamic responses of the brain to external stimuli. The ability of near-inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical optics
 
دوره 17 9 شماره
صفحات -
تاریخ انتشار 2012