Fragmentation of Magnetically Subcritical Clouds into Multiple Supercritical Cores and the Formation of Small Stellar Groups
نویسندگان
چکیده
Isolated low-mass stars are formed in dense cores of molecular clouds. In the standard picture, the cores are envisioned to condense out of strongly magnetized clouds through ambipolar diffusion. Most previous calculations based on this scenario are limited to axisymmetric cloud evolution leading to a single core, which collapses to form an isolated star or stellar system at the center. These calculations are here extended to the nonaxisymmetric case under thin-disk approximation, which allows for a detailed investigation into the process of fragmentation, fundamental to binary, multiple system, and cluster formation. We have shown previously that initially axisymmetric, magnetically subcritical clouds with an m = 2 density perturbation of modest fractional amplitude (∼ 5%) can develop highly elongated bars, which facilitate binary and multiple system formation. In this paper, we show that in the presence of higher order (m ≥ 3) perturbations of similar amplitude such clouds are capable of breaking up into a set of discrete dense cores. These multiple cores are magnetically supercritical. They are expected to collapse into single stars or stellar systems individually and, collectively, to form a small stellar group. Our calculations demonstrate that the standard scenario for single star formation involving magnetically subcritical clouds and ambipolar diffusion can readily produce more than one star, provided that the cloud mass is well above the Jeans limit and relatively uniformly distributed. The fragments develop in the central part of the cloud, after the region has become magnetically supercritical but before rapid collapse sets in. It is enhanced by the flattening of mass distribution along the field lines and by the magnetic tension force, which is strong enough during the subcritical-to-supercritical transition to balance out the gravity to a large extent and thus lengthen the time for perturbations to grow and fragments to separate out from the background. Subject headings: binaries: formation — ISM: clouds — ISM: magnetic fields — MHD — stars: formation
منابع مشابه
On the Formation of Binary Stars and Small Stellar Groups in Magnetically Subcritical Clouds
In the standard scenario of isolated low-mass star formation, strongly magnetized molecular clouds are envisioned to condense gradually into cores, driven by ambipolar diffusion. Once the cores become magnetically supercritical, they collapse to form stars. Most previous studies based on this scenario are limited to axisymmetric calculations leading to single supercritical core formation. The a...
متن کاملRing Formation in Magnetically Subcritical Clouds and Multiple Star Formation
We study numerically the ambipolar diffusion-driven evolution of nonrotating, magnetically subcritical, disk-like molecular clouds, assuming axisymmetry. Previous similar studies have concentrated on the formation of single magnetically supercritical cores at the cloud center, which collapse to form isolated stars. We show that, for a cloud with many Jeans masses and a relatively flat mass dist...
متن کاملNonaxisymmetric Evolution of Magnetically Subcritical Clouds: Bar Growth, Core Elongation, and Binary Formation
We have begun a systematic numerical study of the nonlinear growth of nonaxisymmetric perturbations during the ambipolar diffusion-driven evolution of initially magnetically subcritical molecular clouds, with an eye on the formation of binaries, multiple stellar systems and small clusters. In this initial study, we focus on the m = 2 (or bar) mode, which is shown to be unstable during the dynam...
متن کاملQuiescent Cores and the Efficiency of Turbulence-accelerated, Magnetically Regulated Star Formation
The efficiency of star formation, defined as the ratio of the stellar to total (gas and stellar) mass, is observed to vary from a few percent in regions of dispersed star formation to about a third in clusterforming cores. This difference may reflect the relative importance of magnetic fields and turbulence in controlling star formation. We investigate the interplay between supersonic turbulenc...
متن کاملBinary and Multiple Star Formation in Magnetic Clouds: Bar Growth and Fragmentation
In the standard scenario of isolated low-mass star formation, strongly magnetized molecular clouds are envisioned to condense gradually into dense cores, driven by ambipolar diffusion. Once the cores become magnetically supercritical, they collapse to form stars. Previous studies based on this scenario are limited to axisymmetric calculations leading to single supercritical core formation. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008