Efficient anomaly detection by modeling privilege flows using hidden Markov model

نویسندگان

  • Sung-Bae Cho
  • Hyuk-Jang Park
چکیده

Anomaly detection techniques have been devised to address the limitations of misuse detection approaches for intrusion detection with the model of normal behaviors. A hidden Markov model (HMM) is a useful tool to model sequence information, an optimal modeling technique to minimize false-positive error while maximizing detection rate. In spite of high performance, however, it requires large amounts of time to model normal behaviors and determine intrusions, making it difficult to detect intrusions in real-time. This paper proposes an effective HMM-based intrusion detection system that improves the modeling time and performance by only considering the privilege transition flows based on the domain knowledge of attacks. Experimental results show that training with the proposed method is significantly faster than the conventional method trained with all data, without loss of detection performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective HMM-Based Intrusion Detection System with Privilege Change Event Modeling

Anomaly detection techniques have been devised to address the limitations of misuse detection approach for intrusion detection. They can abstract information about the normal behaviors of a system and detect attacks regardless of whether or not the system has observed them before. However, they have an inherent difficulty to deal with large volume of audit data to model the normal behaviors. Ca...

متن کامل

Using Hidden Markov Model in Anomaly Intrusion Detection

Hidden Markov Model (HMM) has been successfully used in speech recognition and some classification areas. Since Anomaly Intrusion Detection can be treated as a classification problem, we proposed some basic idea on using HMM model to modeling user's behavior. Then we tried HMM modeling on the real SIAC company log data. The results are not good, the reasons are: 1. SIAC data gives us too little...

متن کامل

Intrusion Detection Using Evolutionary Hidden Markov Model

Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training,  ...

متن کامل

Hidden semi-Markov model for anomaly detection

In this paper, hidden semi-Markov model (HSMM) is introduced into intrusion detection. Hidden Markov model (HMM) has been applied in intrusion detection systems several years, but it has a major weakness: the inherent duration probability density of a state in HMM is exponential, which may be inappropriate for the modeling of audit data of computer systems. We can handle this problem well by de...

متن کامل

مدل یابی انتشار بیماری های عفونی بر اساس رویکرد آماری بیز

Background and Aim: Health surveillance systems are now paying more attention to infectious diseases, largely because of emerging and re-emerging infections. The main objective of this research is presenting a statistical method for modeling infectious disease incidence based on the Bayesian approach.Material and Methods: Since infectious diseases have two phases, namely epidemic and non-epidem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Security

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2003