Metabolomic characterisation of the effects of oncogenic PIK3CA transformation in a breast epithelial cell line
نویسندگان
چکیده
Somatic mutations in PIK3CA are frequently found in a number of human cancers, including breast cancer, altering cellular physiology and tumour sensitivity to chemotherapy. This renders PIK3CA an attractive molecular target for early detection and personalised therapy. Using 1H Nuclear Magnetic Resonance spectroscopy (NMR) and Gas Chromatography - Mass Spectrometery (GC-MS) together with 13C stable isotope-labelled glucose and glutamine as metabolic tracers, we probed the phenotypic changes in metabolism following a single copy knock-in of mutant PIK3CA (H1047R) in the MCF10A cell line, an important cell model for studying oncogenic transformation in breast tissues. We observed effects in several metabolic pathways, including a decrease in glycerophosphocholine level together with increases in glutaminolysis, de novo fatty acid synthesis and pyruvate entry into the tricarboxylic acid cycle. Our findings highlight altered glyceroplipid metabolism and lipogenesis, as key metabolic phenotypes of mutant PIK3CA transformation that are recapitulated in the MCF10A cellular model.
منابع مشابه
Mutant PIK3CA Induces EMT in a Cell Type Specific Manner
Breast cancer is characterized into different molecular subtypes, and each subtype is characterized by differential gene expression that are associated with distinct survival outcomes in patients. PIK3CA mutations are commonly associated with most breast cancer subtypes. More recently PIK3CA mutations have been shown to induce tumor heterogeneity and are associated with activation of EGFR-signa...
متن کاملBreast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells.
Activation of the phosphoinositide 3-kinase (PI3K) pathway has been implicated in the pathogenesis of a variety of cancers. Recently, mutations in the gene encoding the p110alpha catalytic subunit of PI3K (PIK3CA) have been identified in several human cancers. The mutations primarily result in single amino acid substitutions, with >85% of the mutations in either exon 9 or 20. Multiple studies h...
متن کاملMiR-6165 Dysregulation in Breast Cancer and Its Effect on Cell Proliferation and Migration
Background: ncRNAs have been identified as oncogenic drivers and tumor suppressors in any type of cancer. Although many classes of ncRNAs have been reported, most studies have been performed on microRNAs (miRNAs). miRNAs can regulate several target genes and affect important processes such as homeostasis, angiogenesis, cell proliferation, differentiation, and apoptosis. Located in the p75NTR ge...
متن کاملLINC00520 is induced by Src, STAT3, and PI3K and plays a functional role in breast cancer
Long non-coding RNAs (lncRNAs) have been implicated in normal cellular homeostasis as well as pathophysiological conditions, including cancer. Here we performed global gene expression profiling of mammary epithelial cells transformed by oncogenic v-Src, and identified a large subset of uncharacterized lncRNAs potentially involved in breast cancer development. Specifically, our analysis revealed...
متن کاملFrequent mutation of the PIK3CA gene in ovarian and breast cancers.
PURPOSE Activation of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway, resulting in increased cell proliferation, survival, and motility, is believed to play an oncogenic role in many cancer types. The PIK3CA gene encodes the p110alpha catalytic subunit of PI3K, and is amplified in some ovarian cancers, whereas the AKT2 gene is amplified in some ovarian, breast, and pancreatic cancers. Rec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017