MST3 Kinase Phosphorylates TAO1/2 to Enable Myosin Va Function in Promoting Spine Synapse Development

نویسندگان

  • Sila K. Ultanir
  • Smita Yadav
  • Nicholas T. Hertz
  • Juan A. Oses-Prieto
  • Suzanne Claxton
  • Alma L. Burlingame
  • Kevan M. Shokat
  • Lily Y. Jan
  • Yuh-Nung Jan
چکیده

Mammalian Sterile 20 (Ste20)-like kinase 3 (MST3) is a ubiquitously expressed kinase capable of enhancing axon outgrowth. Whether and how MST3 kinase signaling might regulate development of dendritic filopodia and spine synapses is unknown. Through shRNA-mediated depletion of MST3 and kinase-dead MST3 expression in developing hippocampal cultures, we found that MST3 is necessary for proper filopodia, dendritic spine, and excitatory synapse development. Knockdown of MST3 in layer 2/3 pyramidal neurons via in utero electroporation also reduced spine density in vivo. Using chemical genetics, we discovered thirteen candidate MST3 substrates and identified the phosphorylation sites. Among the identified MST3 substrates, TAO kinases regulate dendritic filopodia and spine development, similar to MST3. Furthermore, using stable isotope labeling by amino acids in culture (SILAC), we show that phosphorylated TAO1/2 associates with Myosin Va and is necessary for its dendritic localization, thus revealing a mechanism for excitatory synapse development in the mammalian CNS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cdk5-dependent Mst3 phosphorylation and activity regulate neuronal migration through RhoA inhibition.

The radial migration of newborn neurons is critical for the lamination of the cerebral cortex. Proper neuronal migration requires precise and rapid reorganization of the actin and microtubule cytoskeleton. However, the underlying signaling mechanisms controlling cytoskeletal reorganization are not well understood. Here, we show that Mst3, a serine/threonine kinase highly expressed in the develo...

متن کامل

Hippocampal synaptic transmission and plasticity are preserved in myosin Va mutant mice.

Recent studies have identified myosin Va as an organelle motor that may have important functions in neurons. Abundantly expressed at the hippocampal postsynaptic density, it interacts with protein complexes involved in synaptic plasticity. It is also located in presynaptic terminals and may function to recruit vesicles in the reserve pool to the active zone. Dilute-lethal mice are spontaneous m...

متن کامل

Dynamic control of excitatory synapse development by a Rac1 GEF/GAP regulatory complex.

The small GTPase Rac1 orchestrates actin-dependent remodeling essential for numerous cellular processes including synapse development. While precise spatiotemporal regulation of Rac1 is necessary for its function, little is known about the mechanisms that enable Rac1 activators (GEFs) and inhibitors (GAPs) to act in concert to regulate Rac1 signaling. Here, we identify a regulatory complex comp...

متن کامل

Myosin Va cooperates with PKA RIalpha to mediate maintenance of the endplate in vivo.

Myosin V motor proteins facilitate recycling of synaptic receptors, including AMPA and acetylcholine receptors, in central and peripheral synapses, respectively. To shed light on the regulation of receptor recycling, we employed in vivo imaging of mouse neuromuscular synapses. We found that myosin Va cooperates with PKA on the postsynapse to maintain size and integrity of the synapse; this coop...

متن کامل

Zinc ion acts as a cofactor for serine/threonine kinase MST3 and has a distinct role in autophosphorylation of MST3.

We examined the metal ion cofactor preference for MST3 (mammalian Ste20-like kinase 3) of the Ste20 serine/threonine kinase family. Four metal ions (Mg(+2), Mn(+2), Zn(2+), and Co(2+)) activate endogenous, exogenous, and baculovirus-expressed recombinant MST3 within the physiological concentration range. In contrast, Fe(+2) and Ca(+2) do not function as MST3 cofactors. Mn(2+), Co(2+), and Mg(2+...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2014