Clustering and Visualization of Multivariate Time Series
نویسندگان
چکیده
The analysis of MTS is an established research area, and methods to carry it out have stemmed both from traditional statistics and from the Machine Learning and Computational Intelligence fields. In this chapter, we are mostly interested in the latter, but considering a mixed approach that can be ascribed to Statistical Machine Learning. MTS are often analyzed for prediction and forecasting and, therefore, the problem is considered to be supervised. In comparison, little research has been conducted on the problem of unsupervised clustering for the exploration of the dynamics of multivariate time series (Liao, 2005). It is sensible to assume that, in many problems involving MTS, the states of a process may be reproduced or revisited over time; therefore, clustering structure is likely to be found in the series. Furthermore, for exploratory purposes, it ABStrAct
منابع مشابه
An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملAdvances in clustering and visualization of time series using GTM through time
Most of the existing research on multivariate time series concerns supervised forecasting problems. In comparison, little research has been devoted to their exploration through unsupervised clustering and visualization. In this paper, the capabilities of Generative Topographic Mapping Through Time, a model with foundations in probability theory, that performs simultaneous time series clustering...
متن کاملGrouping Multivariate Time Series: A Case Study
We present a case study to demonstrate a process for grouping massive multivariate time series based on nonparametric statistical summaries aided by information visualization. We want a method that allows us to quickly find approximate groups in time series, both to identify typical aggregate behaviors and to find aberrant outliers. We use simple statistical summaries to capture the temporal na...
متن کاملSpace-Time-Attribute Analysis and Visualization of U.S. Company Data
This research integrates computational, visual, and cartographic methods to develop geo-visual analytic strategies through which analysts can detect and explore multivariate, spatio-temporal patterns. The paper introduces a new form of geographic small multiple display along with a novel integration of computational and visual methods, for clustering and sorting large, multivariate data sets an...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016