Clustering and Visualization of Multivariate Time Series

نویسندگان

  • Alfredo Vellido
  • Iván Olier
چکیده

The analysis of MTS is an established research area, and methods to carry it out have stemmed both from traditional statistics and from the Machine Learning and Computational Intelligence fields. In this chapter, we are mostly interested in the latter, but considering a mixed approach that can be ascribed to Statistical Machine Learning. MTS are often analyzed for prediction and forecasting and, therefore, the problem is considered to be supervised. In comparison, little research has been conducted on the problem of unsupervised clustering for the exploration of the dynamics of multivariate time series (Liao, 2005). It is sensible to assume that, in many problems involving MTS, the states of a process may be reproduced or revisited over time; therefore, clustering structure is likely to be found in the series. Furthermore, for exploratory purposes, it ABStrAct

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering

Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...

متن کامل

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

Advances in clustering and visualization of time series using GTM through time

Most of the existing research on multivariate time series concerns supervised forecasting problems. In comparison, little research has been devoted to their exploration through unsupervised clustering and visualization. In this paper, the capabilities of Generative Topographic Mapping Through Time, a model with foundations in probability theory, that performs simultaneous time series clustering...

متن کامل

Grouping Multivariate Time Series: A Case Study

We present a case study to demonstrate a process for grouping massive multivariate time series based on nonparametric statistical summaries aided by information visualization. We want a method that allows us to quickly find approximate groups in time series, both to identify typical aggregate behaviors and to find aberrant outliers. We use simple statistical summaries to capture the temporal na...

متن کامل

Space-Time-Attribute Analysis and Visualization of U.S. Company Data

This research integrates computational, visual, and cartographic methods to develop geo-visual analytic strategies through which analysts can detect and explore multivariate, spatio-temporal patterns. The paper introduces a new form of geographic small multiple display along with a novel integration of computational and visual methods, for clustering and sorting large, multivariate data sets an...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016