An improved algorithm for approximating the chromatic number of Gn, p
نویسندگان
چکیده
Answering a question of Krivelevich and Vu [12], we present an algorithm for approximating the chromatic number of random graphs Gn,p within a factor of O( √ np/ ln(np)) in polynomial expected time. The algorithm applies to edge probabilities c0/n ≤ p ≤ 0.99, where c0 > 0 is a certain constant.
منابع مشابه
On approximating the b-chromatic number
We consider the problem of approximating the b-chromatic number of a graph. We show that there is no constant ε > 0 for which this problem can be approximated within a factor of 120/113− ε in polynomial time, unless P = NP. This is the first hardness result for approximating the b-chromatic number.
متن کاملAn algorithm for approximating nondominated points of convex multiobjective optimization problems
In this paper, we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP), where the constraints and the objective functions are convex. We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points. The proposed algorithm can be appl...
متن کاملThe Distant-l Chromatic Number of Random Geometric Graphs
A random geometric graph Gn is given by picking n vertices in R d independently under a common bounded probability distribution, with two vertices adjacent if and only if their l-distance is at most rn. We investigate the distant-l chromatic number χl(Gn) of Gn for l ≥ 1. Complete picture of the ratios of χl(Gn) to the chromatic number χ(Gn) are given in the sense of almost sure convergence.
متن کاملOn the Chromatic Number of Random Graphs
In this paper we consider the classical Erdős-Rényi model of random graphs Gn,p. We show that for p = p(n) ≤ n−3/4−δ, for any fixed δ > 0, the chromatic number χ(Gn,p) is a.a.s. , +1, or +2, where is the maximum integer satisfying 2( −1) log( −1) ≤ p(n−1).
متن کاملThe t-Improper Chromatic Number of Random Graphs
We consider the t-improper chromatic number of the Erdős-Rényi random graph Gn,p. The t-improper chromatic number χ(G) of G is the smallest number of colours needed in a colouring of the vertices in which each colour class induces a subgraph of maximum degree at most t. If t = 0, then this is the usual notion of proper colouring. When the edge probability p is constant, we provide a detailed de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Process. Lett.
دوره 99 شماره
صفحات -
تاریخ انتشار 2006