An improved algorithm for approximating the chromatic number of Gn, p

نویسندگان

  • Amin Coja-Oghlan
  • Lars Kuhtz
چکیده

Answering a question of Krivelevich and Vu [12], we present an algorithm for approximating the chromatic number of random graphs Gn,p within a factor of O( √ np/ ln(np)) in polynomial expected time. The algorithm applies to edge probabilities c0/n ≤ p ≤ 0.99, where c0 > 0 is a certain constant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On approximating the b-chromatic number

We consider the problem of approximating the b-chromatic number of a graph. We show that there is no constant ε > 0 for which this problem can be approximated within a factor of 120/113− ε in polynomial time, unless P = NP. This is the first hardness result for approximating the b-chromatic number.

متن کامل

An algorithm for approximating nondominated points of convex multiobjective optimization problems

‎In this paper‎, ‎we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP)‎, ‎where the constraints and the objective functions are convex‎. ‎We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points‎. ‎The proposed algorithm can be appl...

متن کامل

The Distant-l Chromatic Number of Random Geometric Graphs

A random geometric graph Gn is given by picking n vertices in R d independently under a common bounded probability distribution, with two vertices adjacent if and only if their l-distance is at most rn. We investigate the distant-l chromatic number χl(Gn) of Gn for l ≥ 1. Complete picture of the ratios of χl(Gn) to the chromatic number χ(Gn) are given in the sense of almost sure convergence.

متن کامل

On the Chromatic Number of Random Graphs

In this paper we consider the classical Erdős-Rényi model of random graphs Gn,p. We show that for p = p(n) ≤ n−3/4−δ, for any fixed δ > 0, the chromatic number χ(Gn,p) is a.a.s. , +1, or +2, where is the maximum integer satisfying 2( −1) log( −1) ≤ p(n−1).

متن کامل

The t-Improper Chromatic Number of Random Graphs

We consider the t-improper chromatic number of the Erdős-Rényi random graph Gn,p. The t-improper chromatic number χ(G) of G is the smallest number of colours needed in a colouring of the vertices in which each colour class induces a subgraph of maximum degree at most t. If t = 0, then this is the usual notion of proper colouring. When the edge probability p is constant, we provide a detailed de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 99  شماره 

صفحات  -

تاریخ انتشار 2006