Matrix Extension with Symmetry and Applications to Symmetric Orthonormal Complex M-wavelets

نویسنده

  • BIN HAN
چکیده

Matrix extension with symmetry is to find a unitary square matrix P of 2π-periodic trigonometric polynomials with symmetry such that the first row of P is a given row vector p of 2πperiodic trigonometric polynomials with symmetry satisfying pp = 1. Matrix extension plays a fundamental role in many areas such electronic engineering, system sciences, wavelet analysis, and applied mathematics. In this paper, we shall solve matrix extension with symmetry by developing a step-by-step simple algorithm to derive a desired square matrix P from a given row vector p of 2πperiodic trigonometric polynomials with complex coefficients and symmetry. As an application of our algorithm for matrix extension with symmetry, for any dilation factor M , we shall present two families of compactly supported symmetric orthonormal complex M -wavelets with arbitrarily high vanishing moments. Wavelets in the first family have the shortest possible supports with respect to their orders of vanishing moments; their existence relies on the establishment of nonnegativity on the real line of certain associated polynomials. Wavelets in the second family have increasing orders of linear-phase moments and vanishing moments, which are desirable properties in numerical algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compactly Supported Orthonormal Complex Wavelets with Dilation 4 and Symmetry

In this paper, we provide a family of compactly supported orthonormal complex wavelets with dilation 4 such that the generating wavelet functions are symmetric/antisymmetric and have linearly increasing orders of vanishing moments and smoothness.

متن کامل

Matrix Extension with Symmetry and Its Application to Symmetric Orthonormal Multiwavelets

Let P be an r×s matrix of Laurent polynomials with symmetry such that P(z)P∗(z) = Ir for all z ∈ C\{0} and the symmetry of P is compatible. The matrix extension problem with symmetry is to find an s × s square matrix Pe of Laurent polynomials with symmetry such that [Ir,0]Pe = P (that is, the submatrix of the first r rows of Pe is the given matrix P), Pe is paraunitary satisfying Pe(z)P∗e(z) = ...

متن کامل

Complex Symmetric Operators and Applications

We study a few classes of Hilbert space operators whose matrix representations are complex symmetric with respect to a preferred orthonormal basis. The existence of this additional symmetry has notable implications and, in particular, it explains from a unifying point of view some classical results. We explore applications of this symmetry to Jordan canonical models, selfadjoint extensions of s...

متن کامل

Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules

In this paper, we investigate compactly supported symmetric orthonormal dyadic complex wavelets such that the symmetric orthonormal refinable functions have high linear-phase moments and the antisymmetric wavelets have high vanishing moments. Such wavelets naturally lead to real-valued symmetric tight wavelet frames with some desirable moment properties, and are related to coiflets which are re...

متن کامل

Matrix Extension with Symmetry and Its Application to Filter Banks

Let P be an r×smatrix of Laurent polynomials with symmetry such that P(z)P∗(z) = Ir for all z ∈ C\{0} and the symmetry of P is compatible. The matrix extension problem with symmetry is to find an s × s square matrix Pe of Laurent polynomials with symmetry such that [Ir,0]Pe = P (that is, the submatrix of the first r rows of Pe is the given matrix P), Pe is paraunitary satisfying Pe(z)Pe(z) = Is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009